Skip to main content
Log in

Synthesis of Spherical Copper Powders by Reduction Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Spherical copper powders for additive manufacturing are presently made via gas atomization process which incurs high cost and energy. Present study brings in a novel method for synthesis of spherical copper powders through carbothermic reduction of copper oxides. In this process, fine graphite particles are employed to act as reducing agent as well as spherodizing aid. Effect of graphite (3.5–14 wt%) content on formation of spherical copper powders and effect of temperature (850–1050 °C) and time of reaction (30–240 min) on purity, particle size, density, morphology and flowability of powders are studied. Copper particles with spherical morphology, purity 99 wt% Cu, Oxygen (total) 0.07 wt%, mean particle size 78 µm, apparent density 4.83 g/cc, tap density 5.2 g/cc and flowability 18 s/50 g are obtained at optimized graphite additions of 10.5 wt% and process parameters of 1050 °C and 240 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive spectroscopy

AD:

Apparent density

TD:

Tap density

References

  1. Tran T Q, Chinnappan A, Lee J K Y, Loc N H, Tran L T, Wang G, et al., Metals (2019). https://doi.org/10.3390/met9070756

    Article  Google Scholar 

  2. Romano T, Vedani M, Additive Manufacturing of Pure Copper: Technologies and Applications, Copper - From the Mineral to the Final Application [Working Title], (2022) https://doi.org/10.5772/intechopen.107233.

  3. Naboichenko S S, Powder Metall Met Ceram 21 (1982) 843–846. https://doi.org/10.1007/BF00805471

    Article  Google Scholar 

  4. Jhajharia R, Jain D, Sengar A, Goyal A, and Soni P R, Powder Technol 301 (2016) 10–15. https://doi.org/10.1016/j.powtec.2016.05.031

    Article  CAS  Google Scholar 

  5. Pease R N, and Taylor H S, J Am Chem Soc 43 (1921) 2179–2188. https://doi.org/10.1021/ja01443a007

    Article  CAS  Google Scholar 

  6. Bond W D, J Phys Chem 66 (1962) 1573–1577. https://doi.org/10.1021/j100815a002

    Article  CAS  Google Scholar 

  7. Fleisch T H, and Mains G J, Appl Surf Sci 10 (1982) 51–62. https://doi.org/10.1016/0378-5963(82)90134-9

    Article  ADS  CAS  Google Scholar 

  8. Kiyoshi T, and Toru T, ISIJ Int 9 (1962) 102–108. https://doi.org/10.2497/jjspm.9.102

    Article  Google Scholar 

  9. Sarkisyan N S, Nichiporenko O S, and Kol’chinskii M Z, Powder Metall Met Ceram 30 (1991) 432–435. https://doi.org/10.1007/BF00793675

    Article  Google Scholar 

  10. Sasha A C S, Jordi P, Ricardo H, and Maria D R, Powder Metall 63 (2020) 142–148. https://doi.org/10.1080/00325899.2020.1724431

    Article  CAS  Google Scholar 

  11. Sinha A, and Sharma B P, Mater Res Bull 37 (2002) 407–416. https://doi.org/10.1016/S0025-5408(01)00819-4

    Article  CAS  Google Scholar 

  12. Songping W, and Shuyuan M, Mater Lett 60 (2006) 2438–2442. https://doi.org/10.1016/j.matlet.2004.08.051

    Article  CAS  Google Scholar 

  13. Yoon D K, Kang S L, Eun K Y, and Kim Y, Mater Sci Forum (2007). https://doi.org/10.4028/www.scientific.net/MSF.534-536.109

    Article  Google Scholar 

  14. Wills F, and Clugston E J, J Electrochem Soc 106 (1959) 362. https://doi.org/10.1149/1.2427348

    Article  CAS  Google Scholar 

  15. Wang M, Wang Z, and Guo Z, Trans Nonferrous Met Soc China 20 (2010) 1154–1160. https://doi.org/10.1016/S1003-6326(09)60271-5

    Article  CAS  Google Scholar 

  16. Seku K, Ganapuram B R, Pejjai B, Kotu G M, and Narasimha G, Int J Nano Dimens 9 (2018) 7–14.

    CAS  Google Scholar 

  17. Gunter J, Products, In: Konrad JAK, editor. Copper its Trade, Manufacture, Use and Environmental status, ASM International, United States of America, 1999, 177 pp, Paperback ISBN: 0-87170-656-3.

  18. Neikov O D, Naboychenko S S, and Murashova I B, Handb Non-Ferr Metal Powders (2019). https://doi.org/10.1016/b978-0-08-100543-9.00019-1

    Article  Google Scholar 

  19. Copper & Copper alloy Powders for future technical applications, https://www.schlenk.com/fileadmin/editorsCMS/Medien/02_Maerkte_und_Produkte/pdf/Werkstoffindustrie__BU_MM_/Copper_und_Copper_alloy_powders_12_20.pdf, accessed 04–11–2023

  20. Spherical Copper Powder, https://www.attelements.com/additive-manufacturing-3d-printing-materials/spherical-copper-powder.html, Accessed 04-11-2023

  21. MET Cu-OF-technical data sheet, https://metalpine.at/knowsystem/met-cu-of-technical-data-sheet-210, Accessed 04-11-2023

  22. KME copper powder-Material data sheet, https://www.kme-archiv.com/fileadmin/DOWNLOADCENTER/SPECIAL%20DIVISION/3%20Extruded%20%26%20Drawn/7_KME_POWDER/KME_Powder.pdf, Accessed 04-11-2023

  23. Atomized Copper Powder, http://www.cnpcpowder.com/uploads/soft/160525/AtomizedCopperPowder-CNPCPOWDER.pdf, Accessed 04-11-2023

  24. Kobayashi N, Kawakami Y, Kamada K, Li J G, Ye R, Watanabe T, et al., Trans Mater Res Soc Jpn 31 (2007) 139–142. https://doi.org/10.14723/tmrsj.32.139

    Article  Google Scholar 

  25. Kobayashi N, Kawakami Y, Kamada K, Li J G, Ye R, Watanabe T, et al., Thin Solid Films 516 (2008) 4402–4406. https://doi.org/10.1016/j.tsf.2007.10.064

    Article  ADS  CAS  Google Scholar 

  26. Sista K S, Moon A P, Sinha G R, Pirjade B M, and Dwarapudi S, Powder Technol 400 (2022) 1–14. https://doi.org/10.1016/j.powtec.2022.117225

    Article  CAS  Google Scholar 

  27. Sleptsova N P K, and Ivashchenko A N, Powder Metall Met Ceram 4 (1965) 871–876. https://doi.org/10.1007/BF00773688

    Article  Google Scholar 

  28. Tang S, Cheng Z, Lei C, Huang H, Preparation method for superfine low-oxygen-content spherical copper powder, Patent, CN104874806A (2017). https://patents.google.com/patent/CN104874806A/en.

  29. Tang S, Cheng Z, Lei C, Huang H, Manufacturing method of micron and nanometer metal spherical powder, Patent, CN104259469A (2017). https://patents.google.com/patent/CN104259469A/en.

  30. Wang X, Hanson J C, Frenkel A I, Kim J Y, and Rodriguez J A, J Phys Chem B 108 (2004) 13667–13673. https://doi.org/10.1021/jp040366o

    Article  CAS  Google Scholar 

  31. Liu L, Zhnag T J, and Cui K, J Mater Res 14 (1999) 4062–4069. https://doi.org/10.1557/JMR.1999.0548

    Article  ADS  CAS  Google Scholar 

  32. Lebukhova N V, and Karpovich N F, Inorganic Materials 44 (2008) 890–893. https://doi.org/10.1134/s0020168508080207

    Article  CAS  Google Scholar 

  33. Mondal K, Lorethova H, Hippo E, Wiltowski T, and Lalvani S B, Fuel ProcessTechnol 86 (2004) 33–47. https://doi.org/10.1016/j.fuproc.2003.12.009

    Article  CAS  Google Scholar 

  34. Mechachti S, Benchiheub O, Serrai S, and Shalabi M E H, Int J Eng Res 4 (2013) 1467–1472.

    Google Scholar 

  35. Goldstein E A, and Mitchell R E, Proc Combust Inst 33 (2011) 2803–2810. https://doi.org/10.1016/j.proci.2010.06.080

    Article  CAS  Google Scholar 

  36. Pavlović M G, Pavlović L J, Ivanović E R, Radmilović V, and Popov K I, J Serb Chem Soc 66 (2001) 923–933. https://doi.org/10.2298/JSC0112923P

    Article  Google Scholar 

  37. John WC, Brian HP, Bulk Properties of Powders, In: Prasan KSJ, W. Newkirk., editor. ASM Handbook, Volume 7: Powder Metallurgy, ASM International 2015, 668–77 pp, ISBN: 978-1-62708-089-3.

  38. Sista K S, Dwarapudi S, Kumar D, and Sinha G R, ISIJ Int 60 (2020) 1669–1674. https://doi.org/10.2355/isijinternational.ISIJINT-2019-737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kameswara Srikar Sista.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sista, K.S., Moon, A.P., Agrawal, S. et al. Synthesis of Spherical Copper Powders by Reduction Process. Trans Indian Inst Met 77, 889–896 (2024). https://doi.org/10.1007/s12666-023-03199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03199-3

Keywords

Navigation