Skip to main content

Advertisement

Log in

Single-Step Production of Nanostructured Copper-Nickel (CuNi) and Copper-Nickel-Indium (CuNiIn) Alloy Particles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanostructured copper-nickel (CuNi) and copper-nickel-indium (CuNiIn) alloy particles were produced from aqueous solutions of copper, nickel nitrates and indium sulfate by hydrogen reduction-assisted ultrasonic spray pyrolysis. The effects of reduction temperatures, at 973 K, 1073 K, and 1173 K (700 °C, 800 °C, and 900 °C), on the morphology and crystalline structure of the alloy particles were investigated under the conditions of 0.1 M total precursor concentration and 0.5 L/min H2 volumetric flow rate. X-ray diffraction studies were performed to investigate the crystalline structure. Particle size and morphology were investigated by scanning electron microscope and energy-dispersive spectroscopy was applied to determine the chemical composition of the particles. Spherical nanocrystalline binary CuNi alloy particles were prepared in the particle size range from 74 to 455 nm, while ternary CuNiIn alloy particles were obtained in the particle size range from 80 to 570 nm at different precursor solution concentrations and reduction temperatures. Theoretical and experimental chemical compositions of all the particles are nearly the same. Results reveal that the precursor solution and reduction temperature strongly influence the particle size of the produced alloy particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Cangiano, A.C. Carreras, M.W. Ojeda, M.C. Ruiz: Journal of Alloys and Compounds, 2008, vol. 458, pp. 405–409.

    Article  Google Scholar 

  2. S. Gürmen, A, Güven, B. Ebin, S. Stopic, B. Friedrich: Journal of Alloys and Compounds, 2009, vol. 481, pp. 600–604.

    Article  Google Scholar 

  3. S. Gürmen, B. Ebin: Journal of Alloys and Compounds, 2010, vol. 492, pp. 585–589.

    Article  Google Scholar 

  4. J. Ahmed, K.V. Ramanujachary, S.E. Lofland, A. Furiato, G. Gupta, S.M. Shivaprasad, A,K, Ganguli: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, vol. 331, pp. 206–212.

    Article  Google Scholar 

  5. G.R. Rao, S. K. Meher, B.G. Mishra, P.H.K. Charan, Catalysis Today, 2012, vol. 198, pp. 140– 147.

    Article  Google Scholar 

  6. Y. Shen, A.C. Lua, International Journal of Hydrogen Energy, 2015, vol. 40, pp. 311-321.

    Article  Google Scholar 

  7. A. Kumar, A. Cross, K. Manukyan, R.R. Bhosale, L.J.P. van den Broeke, J.T. Miller, A.S. Mukasyan, E.E. Wolf, Chemical Engineering Journal, 2015, vol. 278, pp. 46–54.

    Article  Google Scholar 

  8. Q. Wu, L.D.L. Duchstein, G.L. Chiarello, J.M. Christensen, C.D. Damsgaard, C.F. Elkjær, J.B. Wagner, B. Temel, J.D. Grunwaldt, A.D. Jensen, ChemCatChem, 2014, vol. 6, pp. 301 – 310.

    Article  Google Scholar 

  9. J. Stergar, G. Ferk, I. Ban, M. Drofenik, A. Hamler, M. Jagodic, D. Makovec, Journal of Alloys and Compounds, 2013, vol. 576, pp. 220–226.

    Article  Google Scholar 

  10. G. Ferk, J. Stergar, M. Drofenik, D. Makovec, A. Hamler, Z. Jagličić, I. Ban, Materials Letters, 2014, vol. 124, pp. 39–42.

    Article  Google Scholar 

  11. L.A. Figueroa, R.A.M. Luckie, R.J.S. Vilchis, O.F.O. Mejía, Progress In Natural Science: Materials International, 2014, vol. 24, pp. 321–328.

    Article  Google Scholar 

  12. J.G. Lee, D.Y. Kim, B. Kang, D. Kim, S.S. Al-Deyab, S.C. James, S.S. Yoon, Computational Materials Science, 2015, vol. 108, pp. 114–120.

    Article  Google Scholar 

  13. X. Li, J. Yao, F. Liu, H. He, M. Zhou, N. Mao, P. Xiao, Y. Zhang, Sensors and Actuators B, 2013, vol. 181, pp. 501–508.

    Article  Google Scholar 

  14. A. Ungureanu, B. Dragoi, A. Chirieac, S. Royer, D. Duprez, E. Dumitriu: Journal of Materials Chemistry, 2011, vol. 21, pp. 12529–12541.

    Article  Google Scholar 

  15. H. Kim, C. Lu, W.L. Worrell, J.M. Vohs, R.J. Gorte: Journal of The Electrochemical Society, 2002, vol. 149(3), pp. A247-A250.

    Article  Google Scholar 

  16. E.L. De Leon-Quiroz, B.A. Puente-Urbina, D. Vazquez-Obregon, L.A. Garcia-Cerda: Materials Letters, 2013, vol. 91, pp. 67-70.

    Article  Google Scholar 

  17. I. Ban, J. Stergar, M. Drofenik, G. Ferk, D. Makovec: Journal of Magnetism and Magnetic Materials, 2011, vol. 323, pp. 2254–2258.

    Article  Google Scholar 

  18. J. Chatterjee, M. Bettge, Y. Haik, C.J. Chen: Journal of Magnetism and Magnetic Materials, 2005, vol. 293, pp. 303–309.

    Article  Google Scholar 

  19. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang: Microchimica Acta, 2013, vol. 180, pp. 161–186.

    Article  Google Scholar 

  20. P. Calleja, J. Esteve, P. Cojocaru, L. Magagnin, E. Vallés, E. Gómez: Electrochimica Acta, 2012, vol. 62, pp. 381– 389.

    Article  Google Scholar 

  21. D.G. Bansal, O.L. Eryılmaz, P.J. Blau: Wear, 2011, vol. 271, pp. 2006– 2015.

    Article  Google Scholar 

  22. C. Marya, S. Fouvry, J.M. Martin, B. Bonnet: Wear, 2011, vol. 272, pp. 18– 37.

    Article  Google Scholar 

  23. B. Rajasekaran, S.G.S. Raman, S.V. Joshi, G. Sundararajan: International Journal of Fatigue, 2009, vol. 31, pp. 791–796.

    Article  Google Scholar 

  24. C.H. Hager, J. Sanders, S. Sharma, A. Voevodin: Wear, 2007, vol. 263, pp. 430–443.

    Article  Google Scholar 

  25. R. Rajendran, Engineering Failure Analysis, 2012, vol. 26, pp. 355–369.

    Article  Google Scholar 

  26. A.J. Song, M.Z. Ma, W.G. Zhang, H.T. Zong, S.X. Liang, Q.H. Hao, R.Z. Zhou, Q. Jing, R.P. Liu: Materials Letters, 2010, vol. 64, pp. 1229-1231.

    Article  Google Scholar 

  27. U. Sarac, M.C. Baykul: Journal of Alloys and Compounds, 2013, vol. 552, pp. 195-201.

    Article  Google Scholar 

  28. V.P. Glibin, B.V. Kuznetsov, T.N. Vorobyova: Journal of Alloys and Compounds, 2005, vol. 386, pp. 139–143.

    Article  Google Scholar 

  29. S.K. Ghosha, G.K. Dey, R.O. Dusane, A.K. Grover: Journal of Alloys and Compounds, 2006, vol. 426, pp. 235–243.

    Article  Google Scholar 

  30. M. Alper, H. Kockar, M. Safak, M.C. Baykul: Journal of Alloys and Compounds, 2008, vol. 453, pp. 15–19.

    Article  Google Scholar 

  31. L. Salgado, F.A. Filho, M.D.M. Das Neves, E.J.G. Pola, O.C. De Souza: Materials Science and Engineering, 1991, vol. A133, pp. 692-697.

    Article  Google Scholar 

  32. M.A. Cangiano, M.W. Ojeda, A.C. Carreras, J.A. González, M.C. Ruiz: Materials Characterization, 2010, vol. 61, pp. 1135-1146.

    Article  Google Scholar 

  33. G.H.M. Saeed, S. Radiman, S.S. Gasaymeh, H.N. Lim, N.M. Huang: Journal of Nanomaterials, 2010, vol. 2010, pp. 1-5.

    Article  Google Scholar 

  34. W. Songping, N. Jing, J. Li, Z. Zhenou: Materials Chemistry and Physics, 2007, vol. 105, pp. 71-75.

    Article  Google Scholar 

  35. G.R. Rao, B.G. Mishra, H.R. Sahul: Materials Letters, 2004, vol. 58, pp. 3523– 3527.

    Article  Google Scholar 

  36. E. Pál, R. Kun, C. Schulze, V. Zöllmer, D. Lehmhus, M. Bäumer, M. Busse: Colloid Polym Sci., 2012, vol. 290, pp. 941–952.

    Article  Google Scholar 

  37. W.Y. Li, H. Liao, J.L. Li, C. Coddet: Advanced Engineering Materials, 2008, vol. 10, pp. 746-749.

    Article  Google Scholar 

  38. K.K. Lee, Y.C. Kang, K.Y. Jung, J.H. Kim: Journal of Alloys and Compounds, 2005, vol. 395, pp. 280-285.

    Article  Google Scholar 

  39. B. Ebin, S. Gürmen, G. Lindbergh: Ceramics International, 2014, vol. 40, pp. 1019-1027.

    Article  Google Scholar 

  40. B. Ebin, S. Gürmen, C. Arslan, G. Lindbergh: Electrochimica Acta, 2012, vol. 76, pp. 368-374.

    Article  Google Scholar 

  41. B. Ebin, E. Arığ, B. Özkal, S. Gürmen: International Journal of Minerals, Metallurgy and Materials, 2012, vol.19, pp. 651-656.

    Article  Google Scholar 

  42. V. Jokanovic, I. Nikcevic, B. Dacic, D. Uskokovic: J. Ceram. Process. Res., 2004, 5(2), pp. 157-162.

    Google Scholar 

  43. B. Ebin, S. Gürmen: KONA Powder and Particle Journal, 2011, vol. 29, pp. 134-140.

    Article  Google Scholar 

  44. D. Minic, M. Premovic, V. Cosovic, D. Manasijevic, L. Nedeljkovic, D. Zivkovic: Journal of Alloys and Compounds, 2014, vol. 617, pp. 379-388.

    Article  Google Scholar 

  45. B. Ebin, E. Yazıcı, S. Gürmen: Transactions of Nonferrous Metals Society of China, 2013, vol. 23, pp. 841-848.

    Article  Google Scholar 

  46. S. Gürmen, B. Ebin, S. Stopic, B. Friedrich: Journal of Alloys and Compounds, 2009, vol. 480, pp. 529-533.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by Istanbul Technical University, Scientific Research Projects Funding (ITU-BAP) with the project number 36927. The authors would like to thank Professor Gültekin GOLLER, Professor Mustafa URGEN, and technician Huseyin SEZER for XRD and SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebahattin Gürmen.

Additional information

Published with permission of the Crown in Right of Canada pertains to F. Mirakhorli, X. Cao, and P. Wanjara.

Manuscript submitted October 21, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apaydın, R.O., Ebin, B. & Gürmen, S. Single-Step Production of Nanostructured Copper-Nickel (CuNi) and Copper-Nickel-Indium (CuNiIn) Alloy Particles. Metall Mater Trans A 47, 3744–3752 (2016). https://doi.org/10.1007/s11661-016-3514-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3514-7

Keywords

Navigation