Skip to main content
Log in

Investigation on the Effect of Cu and Mg Concentration on the Optical and Structural Properties of Doped and Co-doped ZnO Nanoparticles

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, Zinc oxide (ZnO) nanoparticles in pure, doped and concurrently co-doped with magnesium and copper were synthesized via simple co-precipitation method. The optical properties and morphology of the products were studied. Results from ultraviolet–visible (UV–Vis) spectroscopy showed absorption at 378 nm which proved the formation of pure ZnO and further blue and red shifts occurred in UV absorbance depending on the type of the dopant and its concentration. UV–Vis data also showed a good tailoring of the band gap from 2.87 to 3.56 eV depending upon the dopant. X-ray diffraction studies confirmed the formation of ZnO in all samples with a wurtzite hexagonal structure. The results from field emission scanning electron microscopy confirmed the average size of all particles to be 60 nm with a flake-shaped form. Fourier-transform infrared spectra further verified the presence of different functional groups and formation of ZnO in all samples. This study confirmed that ZnO accompanied by some impurities is a great option for optoelectronic applications such as UV photo-absorbers in the UVA range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karimi M, et al., Optoelectron Adv Mater 19 (2017) 641.

    CAS  Google Scholar 

  2. Shen T, Yang K, Dou B, Wei S-H, Liu Y, and Deng H-X, Appl Phys Lett 120 (2022) 42105.

    Article  CAS  Google Scholar 

  3. Ciciliati M A, Silva M F, Fernandes D M, de Melo M A C, Hechenleitner A A W, and Pineda E A G, Mater Lett 159 (2015) 84. https://doi.org/10.1016/j.matlet.2015.06.023

    Article  CAS  Google Scholar 

  4. Priya R, et al., J Mater Sci Mater Electron 32 (2021) 2011. https://doi.org/10.1007/s10854-020-04968-2

    Article  CAS  Google Scholar 

  5. Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T, and Koinuma H, Appl Phys Lett 78 (2001) 3824. https://doi.org/10.1063/11377856

    Article  ADS  CAS  Google Scholar 

  6. Devi P G, and Velu A S, J Theor Appl Phys 10 (2016) 233. https://doi.org/10.1007/s40094-016-0221-0

    Article  Google Scholar 

  7. Ginting M, Taslima S, Sebayang K, Aryanto D, Sudiro T, and Sebayang P, AIP Conf Proc 1862 (2017) 30062. https://doi.org/10.1063/1.4991166

    Article  CAS  Google Scholar 

  8. Siregar N, Motlan M, and Panggabean J, J Phys Conf Ser 1428 (2020) 12026. https://doi.org/10.1088/1742-6596/1428/1/012026

    Article  CAS  Google Scholar 

  9. Mia MNH, Pervez MF, Khalid Hossain M, Reefaz Rahman M, Jalal Uddin M, Al Mashud MA, Ghosh HK and Hoq M, Res Phys 7 (2017) 2683. https://doi.org/10.1016/j.rinp.2017.07.047

  10. Abhijith A R, Srivastava A K, and Srivastava A, J Phys Conf Ser 1531 (2020) 12005. https://doi.org/10.1088/1742-6596/1531/1/012005

    Article  CAS  Google Scholar 

  11. Karmakar S, Panda B, Sahoo B, Routray K L, Varma S, and Behera D, Mater Sci Semicond Process 88 (2018) 198. https://doi.org/10.1016/j.mssp.2018.08.008

    Article  CAS  Google Scholar 

  12. Saravade V, Manzoor Z, Corda A, Zhou C, Ferguson IT and Lu L, Quantum Sens Nano Electron Photonics XVII (2020). https://doi.org/10.1117/12.2543909.

  13. Boruah B D, Nanoscale Adv 1 (2019) 2059.

    Article  ADS  Google Scholar 

  14. Umar A, Lee S, Im Y H, and Hahn Y B, Nanotechnology 16 (2005) 2462. https://doi.org/10.1088/0957-4484/16/10/079

    Article  CAS  PubMed  Google Scholar 

  15. Lee Y-J, Sounart T L, Scrymgeour D A, Voigt J A, and Hsu J W P, J Cryst Growth 304 (2007) 80. https://doi.org/10.1016/j.jcrysgro.2007.02.011

    Article  ADS  CAS  Google Scholar 

  16. Lyu S C, Zhang Y, Lee C J, Ruh H, and Lee H J, Chem. Mater. 15 (2003) 3294. https://doi.org/10.1021/cm020465j

    Article  CAS  Google Scholar 

  17. Li Y B, Bando Y, Sato T, and Kurashima K, Appl Phys Lett 81 (2002) 144. https://doi.org/10.1063/1.1492008

    Article  ADS  CAS  Google Scholar 

  18. UsmanAli S M, Nur O, Willander M, and Danielsson B, Sens Actuators B Chem. 145 (2010) 869.

    Article  CAS  Google Scholar 

  19. Sirelkhatim A, Mahmud S, Seeni A, Haida N, Kaus M, Ann LC, Khadijah S, Bakhori M, Hasan H and Mohamad D, Nano-Micro Lett. 7(2015) 219. https://doi.org/10.1007/s40820-015-0040-x

  20. Benrezgua E, Zoukel A, Deghfel B, Boukhari A, Amari R, Kheawhom S, and AMohamad A, Mater Today Commun (2022) 103306

  21. Goh E G, Xu X, and McCormick P G, Scr Mater 78–79 (2014) 49. https://doi.org/10.1016/j.scriptamat.2014.01.033

    Article  CAS  Google Scholar 

  22. Kahouli M, Barhoumi A, Bouzid A, Al-Hajry A, and Guermazi S, Superlattices Microstruct 85 (2015) 7. https://doi.org/10.1016/j.spmi.2015.05.007

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep K. Arya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabaghiannejad, B., Arya, S.K. & Kumar, S. Investigation on the Effect of Cu and Mg Concentration on the Optical and Structural Properties of Doped and Co-doped ZnO Nanoparticles. Trans Indian Inst Met 77, 677–684 (2024). https://doi.org/10.1007/s12666-023-03121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03121-x

Keywords

Navigation