Skip to main content
Log in

Pure and Cu-Doped ZnO Nanoparticles: Hydrothermal Synthesis, Structural, and Optical Properties

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Pure and Cu-doped zinc oxide (Zn1 –xCuxO with x = 0.00, 0.05, 0.10, and 0.15) nanoparticles were prepared via hydrothermal synthesis using a solution of zinc sulfate (ZnSO4) as precursor, p-phenylenediamine as structure-directing agent in the presence of different amounts of CuSO4 and NaOH. XRD, Raman, UV–Vis, and PL techniques were used to characterize the as-synthesized samples. The XRD analysis reveals that the average particle size of pure ZnO is 13.50 nm. It decreased to 12.11 nm for the Cu-doped sample Zn0.95Cu0.05O, then to 11.00 nm when x = 0.15 (Zn0.85Cu0.15O). The optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from UV–Vis spectra. It turned out to have decreased from 3.18  to 3.11  eV as the amount of Cu increases up from x = 0 to 0.15. The photoluminescence study shows that the introduction of Cu into pure ZnO causes a decrease in surface defects, such as oxygen vacancy and zinc vacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, Nano Lett. 11, 666 (2011).

    Article  CAS  Google Scholar 

  2. M. Sathya, A. Claude, P. Govindasamy, and K. Sudha, Adv. Appl. Sci. Res. 3, 2591 (2012).

    CAS  Google Scholar 

  3. K. Naeem and F. Ouyang, Phys. B 405, 221 (2010).

    Article  CAS  Google Scholar 

  4. M. Seo, Y. Jung, D. Lim, D. Cho, and Y. Jeong, Mater. Lett. 92, 177 (2013).

    Article  CAS  Google Scholar 

  5. O. V. Kibis and M. E. Portnoi, Phys. E (Amsterdam, Neth.) 40, 1899 (2008).

  6. A. Moulahi and F. Sediri, Mater. Res. Bull. 48, 3723 (2013).

    Article  CAS  Google Scholar 

  7. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  CAS  Google Scholar 

  8. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  9. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).

    Article  Google Scholar 

  10. K. Naeem and F. Ouyang, Phys. B (Amsterdam, Neth.) 405, 221 (2010).

  11. C. C. Chen, Ma. Wanhong, and J. C. Zha, Curr. Org. Chem. 14, 630 (2010).

    Article  CAS  Google Scholar 

  12. J. C. Sin, S. M. Lam, K. T. Lee, and A. R. Mohamed, Ceram. Int. 39, 5833 (2013).

    Article  CAS  Google Scholar 

  13. F. Kermiche, A. Taabouche, F. Hanini, S. Menakh, A. Bouabellou, Y. Bouachiba, T. Kerdja, Ch. Benazzouz, M. Bouafia, and S. Amara, Int. J. Neuropsychopharm. 6, 93 (2013).

    CAS  Google Scholar 

  14. S. Karamat, R. S. Rawat, P. Lee, T. L. Tan, and R. V. Ramanujan, Proc. Nat. Sci. Mater. 24, 142 (2014).

    CAS  Google Scholar 

  15. A. M. Ganose and D. O. Scanlon, J. Mater. Chem. C 4, 1467 (2016).

    Article  CAS  Google Scholar 

  16. X.-Y. Feng, Z. Wang, C.-W. Zhang, and P.-J. Wang, J. Nanomater. 2013, 181979 (2013). https://doi.org/10.1155/2013/181979

    Article  CAS  Google Scholar 

  17. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, Sh. F. Chichibu, and M. Kawasaki, Jpn. J. Appl. Phys. 44, L643 (2005).

    Article  CAS  Google Scholar 

  18. S. Sarkar and D. Basak, Appl. Phys. Lett. 103, 041112 (2013).

    Article  Google Scholar 

  19. H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, Sens. Actuators, B 115, 247 (2006).

    Article  CAS  Google Scholar 

  20. D. B. Buchholz, R. P. H. Chang, J. Y. Song, and J. B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005).

    Article  Google Scholar 

  21. G. Z. Xing, J. B. Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. P. Li, S. J. Wang, J. Ding, C. Sum, C. H. A. Huan, and T. Wu, Adv. Mater. 20, 3521 (2008).

    Article  CAS  Google Scholar 

  22. A. R. Kim, J.-Y. Lee, B. R. Jang, J. Y. Lee, H. S. Kim, and N. W. Jang, J. Nanosci. Nanotechnol. 11, 6395 (2011).

    Article  CAS  Google Scholar 

  23. S. Kumar, B. Koo, C. Lee, S. Gautam, K. Chae, S. Sharma, and M. Knobel, Funct. Mater. Lett. 4, 17 (2011).

    Article  Google Scholar 

  24. G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, Appl. Phys. Lett. 105, 112106 (2014).

    Article  Google Scholar 

  25. A. Moulahi and F. Sediri, Optics 127, 7586 (2016).

    CAS  Google Scholar 

  26. S. Satheeskumar, V. Jeevanantham, and D. Tamilselvi, J. Ovonic Res. 14, 9 (2018).

  27. Z. Feng, Y. Wei, R. Liu, D. Yan, Y.-Ch. Wang, J. Luo, A. Senyshyn, C. Cruz, W. Yi, J.-W. Mei, Z. Y. Meng, Y. Shi, and S. Li, Phys. Rev. B 98, 155127 (2018).

    Article  CAS  Google Scholar 

  28. P. Labhane, V. Huse, L. Patle, A. Chaudhari, and G. Sonawane, J. Mater. Sci. Chem. Eng. 3, 39 (2015).

    CAS  Google Scholar 

  29. J. Diouri, J. P. Lascaray, and M. El Amrani, Phys. Rev. B 31, 7995 (1985).

    Article  CAS  Google Scholar 

  30. R. B. Bylsma, W. M. Becker, J. Kossut, U. Debska, and D. Yoder-Short, Phys. Rev. B 33, 8207 (1986).

    Article  CAS  Google Scholar 

  31. I. Hamberg and C. G. Granqvist, J. Appl. Phys. 60, R123 (1986).

    Article  CAS  Google Scholar 

  32. C. Ton-That, M. Foley, and M. R. Phillips, Nanotechnology 19, 415606 (2008).

    Article  Google Scholar 

  33. C. Karunakaran, P. Gomathisankar, and G. Manikandan, Mater. Chem. Phys. 123, 585 (2010).

    Article  CAS  Google Scholar 

  34. A. Umar, B. Karunagaran, E. K. Suh, and Y. B. Hahn, Nanotechnology 17, 4072 (2006).

    Article  CAS  Google Scholar 

  35. S. T. Kuo, W. H. Tuan, J. Shieh, and S. F. Wang, J. Eur. Ceram. Soc. 27, 4521 (2007).

    Article  CAS  Google Scholar 

  36. R. S. Zeferino, M. B. Flores, and U. Pal, J. App. Phys. 109, 014308 (2011).

    Article  Google Scholar 

  37. L. Dai, X. L. Chen, W. J. Wang, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 15, 2221 (2003).

    CAS  Google Scholar 

  38. K. A. Salman, K. Omar, and Z. Hassan, Sol. Energy 86, 541 (2012).

    Article  CAS  Google Scholar 

  39. A. Sharma, B. P. Singh, and S. Dhar, Surf. Sci. 606, L13 (2012).

    Article  CAS  Google Scholar 

  40. M. Šćepanovic, M. Grujić-Brojčin, K. Vojisavljević, S. Bernik, and T. Srećković, J. Raman Spectrosc. 41, 914 (2010).

    Article  Google Scholar 

  41. S. K. Panda and C. Jacob, Appl. Phys. A 96, 805 (2009).

    Article  CAS  Google Scholar 

  42. J. Marquina, Ch. Power, and J. González, Rev. Mex. Fis. 53, 170 (2007).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Mr. Tarek Fezai, who linguistically revised and edited the whole paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sediri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Saad, L., Soltane, L. & Sediri, F. Pure and Cu-Doped ZnO Nanoparticles: Hydrothermal Synthesis, Structural, and Optical Properties. Russ. J. Phys. Chem. 93, 2782–2788 (2019). https://doi.org/10.1134/S0036024419130259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419130259

Keywords:

Navigation