Skip to main content
Log in

Systematic study of Ni, Cu co-doped ZnO nanoparticles for UV photodetector application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanoparticles co-doped simultaneously with Ni and Cu at concentrations varying between 0 and 10% were synthesized by wet chemical method. The resulting nanoparticles were less than ~ 60 nm. At 5% Ni + 5% Cu co-doping, enhanced visible luminescence between 380 nm – 460 nm is seen. Coupled with a low bandgap of 3.4 eV, they result in conducive optical properties for application of this material as UV Photodetector. Marginal changes in bond length (~ 0.003 Å) and c/a ratio (~ 0.002 Å), along with absence of impurity phases reflect its microstructural superiority. Morphological studies indicate marginal reduction of interplanar spacing due to doping, thus, forming uniform crystalline nanoparticles. The nominal composition of Zn, O, Ni and Cu without any impurity phases remains intact. An overall blue shift in absorption peak for all samples than bulk ZnO is observed, emerging due to size effects. However, at doping concentrations higher than 5%, Cu (111) and Ni (200) phases are seen due to clustering. Electrical studies under UV exposure are in agreement with the characterization studies on the sample, showing highest responsivity, current gain and high quantum efficiency values of 10.003 mA, 1.0421 and 3.146% respectively. These properties enable 5% Ni + 5% Cu co-doped ZnO nanoparticles to be explored for use as a material for optoelectronic devices like UV Photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Ghosh, M. Kurian, P. Veerender, N. Padma, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, AIP Conf. Proc. 1313, 394 (2010)

  2. F.J. Liu, Z.F. Hu, J. Sun, Z.J. Li, H.Q. Huang, J.W. Zhao, X.Q. Zhang, Y.S. Wang, Solid State Electron. 68, 90 (2012)

    Article  CAS  Google Scholar 

  3. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)

    Article  CAS  Google Scholar 

  4. S. Thakur, J. Kumar, J. Sharma, N. Sharma, P. Kumar, J. Optoelectron. Adv. Mater. 15, 989 (2013)

    Google Scholar 

  5. M. AC and R. B, J. Mater. Sci. Eng. 05, (2016)

  6. F. Farahbod, N. Bagheri, F. Madadpour, J. Nanotechnol. Eng. Med. 4, 1 (2013)

    Google Scholar 

  7. H. Sun, S.-U. Jen, S.-C. Chen, S.-S. Ye, X. Wang, J. Phys. D Appl. Phys. 50, 045102 (2017)

    Article  Google Scholar 

  8. M. Razeghi, A. Rogalski, J. Appl. Phys. 79, 7433 (1996)

    Article  CAS  Google Scholar 

  9. N. Saxena, P. Manzhi, R.J. Choudhary, S. Upadhyay, S. Ojha, G.R. Umapathy, V. Chawla, O.P. Sinha, R. Krishna, Vacuum 177, 109369 (2020)

    Article  CAS  Google Scholar 

  10. C. Cheng, G. Xu, H. Zhang, Y. Luo, Mater. Lett. 62, 1617 (2008)

    Article  CAS  Google Scholar 

  11. S. Ghosh, P. Srivastava, B. Pandey, M. Saurav, P. Bharadwaj, D.K. Avasthi, D. Kabiraj, S.M. Shivaprasad, Appl. Phys. A Mater. Sci. Process. 90, 765 (2008)

    Article  CAS  Google Scholar 

  12. Z. Banu Bahşi, A.Y. Oral, Opt. Mater. (Amst). 29, 672 (2007)

    Article  Google Scholar 

  13. F. Omnès, E. Monroy, E. Muñoz, J.-L. Reverchon, Gall. Nitride Mater. Devices II 6473, 64730E (2007)

    Article  Google Scholar 

  14. D. Theyvaraju, S. Muthukumaran, Phys. E Low-Dimensional Syst. Nanostructures 74, 93 (2015)

    Article  CAS  Google Scholar 

  15. C.J.S. N, D. A, and P. D, J. Nanomed. Nanotechnol. 08, (2017)

  16. S. Anandan, S. Muthukumaran, J. Mater. Sci. Mater. Electron. 26, 4298 (2015)

    Article  CAS  Google Scholar 

  17. Y.H. Ni, X.W. Wei, X. Ma, J.M. Hong, J. Cryst. Growth 283, 48 (2005)

    Article  CAS  Google Scholar 

  18. S. Chang, S. Ok, H. Jeong, A. Sakai, Mater. Lett. 53, 432 (2002)

    Article  CAS  Google Scholar 

  19. M. Ristić, S. Musić, M. Ivanda, S. Popović, J. Alloys Compd. 397, 4 (2005)

    Article  Google Scholar 

  20. N. Scarisoreanu, D.G. Matei, G. Dinescu, G. Epurescu, C. Ghica, L.C. Nistor, M. Dinescu, Appl. Surf. Sci. 247, 518 (2005)

    Article  CAS  Google Scholar 

  21. R.C. Wang, C.C. Tsai, Appl. Phys. A Mater. Sci. Process. 94, 241 (2009)

    Article  CAS  Google Scholar 

  22. J.J. Wu, S.C. Liu, Adv. Mater. 14, 215 (2002)

    Article  CAS  Google Scholar 

  23. M. Kooti, A.N. Sedeh, J. Chem. 2013, 3 (2013)

    Article  Google Scholar 

  24. A. Shetty, K.K. Nanda, Appl. Phys. A Mater. Sci. Process. 109, 151 (2012)

    Article  CAS  Google Scholar 

  25. O. Singh, N. Kohli, R.C. Singh, Sensors Actuators, B Chem. 178, 149 (2013)

    Article  CAS  Google Scholar 

  26. A. Singh, Adv. Powder Technol. 21, 609 (2010)

    Article  CAS  Google Scholar 

  27. S. Anandan, S. Muthukumaran, M. Ashokkumar, Superlattices Microstruct. 74, 247 (2014)

    Article  CAS  Google Scholar 

  28. B. Benhaoua, A. Rahal, S. Benramache, Superlattices Microstruct. 68, 38 (2014)

    Article  CAS  Google Scholar 

  29. R.K. Chandrakar, R.N. Baghel, V.K. Chandra, B.P. Chandra, Superlattices Microstruct. 86, 256 (2015)

    Article  CAS  Google Scholar 

  30. P. Scherrer, Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Math. Klasse 98 (1918)

  31. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978)

    Article  CAS  Google Scholar 

  32. L. Bruno Chandrasekar, P. Raji, R. Chandramohan, R. Vijayalakshmi, G. Devi, P. Shunmugasundram, P. Sindhu, J. Nanoelectron. Optoelectron. 8, 369 (2013)

    Article  Google Scholar 

  33. S. Kumar, K. Asokan, R.K. Singh, S. Chatterjee, D. Kanjilal, A.K. Ghosh, RSC Adv. 4, 62123 (2014)

    Article  CAS  Google Scholar 

  34. A. Rahmati, A. Balouch Sirgani, M. Molaei, M. Karimipour, Eur. Phys. J. Plus 129, 250 (2014)

    Article  Google Scholar 

  35. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002)

    Article  CAS  Google Scholar 

  36. T.M. Hammad, J.K. Salem, R.G. Harrison, R. Hempelmann, N.K. Hejazy, J. Mater. Sci. Mater. Electron. 24, 2846 (2013)

    Article  CAS  Google Scholar 

  37. L.B. Duan, G.H. Rao, Y.C. Wang, J. Yu, T. Wang, J. Appl. Phys. 104, 013909 (2008)

    Article  Google Scholar 

  38. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, Appl. Surf. Sci. 253, 6905 (2007)

    Article  CAS  Google Scholar 

  39. S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Phys. Rev. B 52, 2995 (1995)

    Article  CAS  Google Scholar 

  40. B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005)

    Article  CAS  Google Scholar 

  41. S. Kumar, S. Basu, B. Rana, A. Barman, S. Chatterjee, S.N. Jha, D. Bhattacharyya, N.K. Sahoo, A.K. Ghosh, J. Mater. Chem. C 2, 481 (2014)

    Article  CAS  Google Scholar 

  42. J.H. Jun, H. Seong, K. Cho, B.-M.M. Moon, S. Kim, Ceram. Int. 35, 2797 (2009)

    Article  CAS  Google Scholar 

  43. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thin Solid Films 619, 41 (2016)

    Article  CAS  Google Scholar 

  44. I. Ben Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, L. Beji, RSC Adv. 8, 32333 (2018)

    Article  CAS  Google Scholar 

  45. S.J. Young, Y.H. Liu, Sensors Actuators, A Phys. 269, 363 (2018)

    Article  CAS  Google Scholar 

  46. R.A. Ismail, N.F. Habubi, E.H. Hadi, Optik (Stuttg). 147, 391 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank UGC-DAE CSR for funding (Grant number: CSR-1C-BL-64/CRS-181/2016-17/845). The authors would also like to express thanks to Dr. Abhishek Verma, AIARS, Amity University, Noida for PL, SEM and EDAX Measurements. The authors are also grateful to Dr. Fouran Singh, IUAC, New Delhi, India for carrying out Raman measurements. The authors would also like to thank Dr. Payal Manzhi, Amity Institute of Nanotechnology, Amity University, Uttar Pradesh for her generous help and feedback during the entire course of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Krishna.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, R., Sahay, P., Saxena, N. et al. Systematic study of Ni, Cu co-doped ZnO nanoparticles for UV photodetector application. J Mater Sci: Mater Electron 32, 2011–2025 (2021). https://doi.org/10.1007/s10854-020-04968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04968-2

Navigation