Skip to main content
Log in

Influence of Additives on Characteristics of Thermal Barrier Coatings: A short Review

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present scenario, additives take a superior part in enhancing the performance of thermal barrier coatings. Adding them in small percentages explicitly enhances the lifetime, efficiency, and corrosion resistance of coating materials. In this paper, the influence of additives on the performance of thermal barrier coatings has been discussed extensively. Conclusions from earlier works reveal that the carbon nanotubes (CNTs) have shown good toughness and hardness due to the formation of CNT bridges across the splats. Conversely, Young’s modulus decreases with an increased percentages of CNTs. The major drawback with the TiN (titanium nitride) additive is that it will be oxidized at a temperature above 450 °C and the defects in CeO2 (Cerium oxide) are due to the presence of oxygen vacancies under different conditions. However, there is no remarkable research identified on graphene and its oxides, h-BN(Hexagonal boron nitride), TiN, and CeO2-added thermal barrier coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stachowiak, SA, Inorganic Coatings Science and Technology. Marcel Dekker Inc. (1983).

  2. Grolitzer, MA, Erickson, DE,"Flow modifiers: a key to developing high quality surface coatings."JCT J. Coat. Technol.,67 89–93 (1995).

  3. Hajas, J, Bubat, A, Comparison of Acrylic Flow Control Additives for Powder Coatings. In: Paint Research Association (PRA). , Brussels (1993).

  4. Juckel H, Polymeric Levelling Additives for Powder Coatings. Polym. Paint Coat. J. 188 (1998) 4408.

    Google Scholar 

  5. Klaren, CHJ, US Patent Number3,842,035, AssigneeShell Oil Co. (1974).

  6. Elbling, IN,US Patent Number 3,039,987, Assignee Westinghouse Electric Corp. (1962).

  7. Liu, L, Fang, Z, Gu, A, Guo, Z,"Lubrication Effect of The Paraffin Oil Filled With Functionalized Multiwalled Carbon Nanotubes for Bismaleimide."Resin. Tribol. Lett.,42 59–65 (2011). https://doi.org/10.1007/s11249-011-9749-y.

  8. Shen, M, Luo, J, Wen, S,"The Tribological Properties of Oils Added With Diamond Nano-Particles."Tribol. Trans., 44 494–498 (2001). https://doi.org/10.1080/10402000108982487.

  9. Arai, S, Fujimori, A, Murai, M, Endo, M,"Excellent Solid Lubrication of Electrodeposited Nickel-Multiwalled Carbon Nanotube Composite Films."Mater. Lett.,62 3545–3548 (2008). https://doi.org/10.1016/j.matlet.2008.03.047.

  10. Peng, Y, Hu, Y, Wang, H,"Tribological Behaviors of Surfactant-Functionalized Carbon Nanotubes as Lubricant Additive in Water."Tribol. Lett.,25 247–253 (2007). https://doi.org/10.1007/s11249-006-9176-7.

  11. Chen, CS, Chen, XH, Xu, LS, Yang, Z, Li, WH,"Modification of Multi-Walled Carbon Nanotubes with Fatty Acid and their Tribological Properties as Lubricant Additive."Carbon.,43 1660–1666 (2005). https://doi.org/10.1016/j.carbon.2005.01.044.

  12. Jambagi, SC, Bandyopadhyay, PP,"Plasma Sprayed Carbon Nanotube Reinforced Splats and Coatings."J. Eur. Ceram. Soc.,37 2235–2244 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.028.

  13. Basha, GMT, Venkateshwarlu, B,"Scratch Resistance of High Velocity Oxy-Fuel Sprayed WC-20% Co Coatings Reinforced with Carbon Nanotubes."J. Surf. Sci. Technol.,36 67–73 (2020). https://doi.org/10.18311/jsst/2020/24184.

  14. Mohammed Thalib Basha, G, Srikanth, A, Venkateshwarlu, B,"Effect of Reinforcement of Carbon Nanotubes on Air Plasma Sprayed Conventional Al2o3-3%Tio2 CeramicCoatings."Mater. Today Proc.,20 191–194 (2020). https://doi.org/10.1016/j.matpr.2019.11.025.

  15. Jin, G, Fang, Y, Cui, X, Wang, C, Zhang, D, Wen, X, Mi, Q,"Effect of Ysz Fibers and Carbon Nanotubes on Bonding Strength and Thermal Cycling Lifetime of YSZ-La2Zr2O7 Thermal Barrier Coatings."Surf. Coat. Technol., 397 125986 (2020). https://doi.org/10.1016/j.surfcoat.2020.125986.

  16. Pathak, A, Mathiyalagam, S, Pandey, KK, Bijalwan, P, Dutta, M, Keshri, AK, "Microstructural Evolution and Fracture Toughness of Plasma Sprayed CNT Reinforced Yttria-Stabilized Hafnia Coating."Int. J. Appl. Ceram. Technol.,16 2306–2315 (2019). https://doi.org/10.1111/ijac.13327.

  17. Thakare, JG, Mulik, RS, Mahapatra, MM,"Evaluation of Cyclic Hot Corrosion Resistance of Plasma-Sprayed Composite Coating in Na2SO4-60%V2O5 Molten Salt Environment."J. Therm. Spray Technol.,29 811–824 (2020). https://doi.org/10.1007/s11666-020-01010-z.

  18. Thakare J G, Mulik R S, and Mahapatra M M, Upadhyaya, R,"Hot Corrosion Behavior of Plasma Sprayed 8YSZ-Alumina- CNT Composite Coating in Na2so4–60% V2o5 Molten Salt Environment.". Ceram. Int. 44 (2018) 21533–21545. https://doi.org/10.1016/j.ceramint.2018.08.217

    Article  CAS  Google Scholar 

  19. Bakhsheshi-Rad, HR, Abdellahi, M, Hamzah, E, Daroonparvar, M, Rafiei, M,"Introducing a Composite Coating Containing CNTs with Good Corrosion Properties: Characterization and Simulation."RSC Adv.,6 108498–108512 (2016). https://doi.org/10.1039/C6RA24222G.

  20. Goyal, K, Singh, H, Bhatia, R,"Behaviour of Carbon Nanotubes-Cr2o3 Thermal Barrier Coatings in Actual Boiler."Surf. Eng., 36124–134 (2020). https://doi.org/10.1080/02670844.2019.1584966.

  21. Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA,"Electric Field Effect in Atomically Thin Carbon Films."Science.,306 666–669 (2004). https://doi.org/10.1126/science.1102896.

  22. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, and Dubonos S V, Firsov, AA,"Two-Dimensional Gas of Massless Dirac Fermions in Graphene.". Nature. 438 (2005) 197–200. https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  23. Lee, C, Wei, X, Kysar, JW, Hone, J,"Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene."Science.,321 385–388 (2008). https://doi.org/10.1126/science.1157996.

  24. Bunch, JS, Verbridge, SS, Alden, JS, van der Zande, AM, Parpia, JM, Craighead, HG, McEuen, PL,"Impermeable Atomic Membranes from Graphene Sheets."Nano Lett.,8 2458–2462 (2008). https://doi.org/10.1021/nl801457b.

  25. Topsakal, M, Şahin, H, Ciraci, S,"Graphene Coatings: An Efficient Protection from Oxidation."Phys. Rev.,B 85, 155445 (2012). https://doi.org/10.1103/PhysRevB.85.155445.

  26. Chen, G, Weng, W, Wu, D, Wu, C, Lu, J, Wang, P, Chen, X,"Preparation and Characterization of Graphite Nanosheets from Ultrasonic Powdering Technique."Carbon. ,42 753–759 (2004). https://doi.org/10.1016/j.carbon.2003.12.074.

  27. Campos-Delgado, J, Kim, YA, Hayashi, T, Morelos-Gómez, A, Hofmann, M, Muramatsu, H, Endo, M, Terrones, H, Shull, RD, Dresselhaus, MS, Terrones, M,"Thermal Stability Studies of CVD-Grown Graphene Nanoribbons: Defect Annealing and Loop Formation."Chem. Phys. Lett.,469 177–182 (2009). https://doi.org/10.1016/j.cplett.2008.12.082.

  28. Kahng, YH, Lee, S, Park, W, Jo, G, Choe, M, Lee, J-H, Yu, H, Lee, T, Lee, K,"Thermal Stability of Multilayer Graphene Films Synthesized by Chemical Vapor Deposition and Stained by Metallic Impurities."Nanotechnology.,23 075702 (2012). https://doi.org/10.1088/0957-4484/23/7/075702.

  29. Su, Y, Kravets, VG, Wong, SL, Waters, J, Geim, AK, Nair, RR,"Impermeable Barrier Films and Protective Coatings Based on Reduced Graphene Oxide."Nat. Commun.,5 4843 (2014). https://doi.org/10.1038/ncomms5843.30.

  30. Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, and Zhou R, Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8 (2013) 594–601. https://doi.org/10.1038/nnano.2013.125

    Article  CAS  Google Scholar 

  31. Schriver, M, Regan, W, Gannett, WJ, Zaniewski, AM, Crommie, MF, Zettl, A,"Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing."ACS Nano.,7 5763–5768 (2013). https://doi.org/10.1021/nn4014356.

  32. Yamaguchi, H, Granstrom, J, Nie, W, Sojoudi, H, Fujita, T, Voiry, D, Chen, M, Gupta, G, Mohite, AD, Graham, S, Chhowalla, M,"Reduced Graphene Oxide Thin Films as Ultrabarriers for Organic Electronics."Adv. Energy Mater.,4 1300986 (2014). https://doi.org/10.1002/aenm.201300986.

  33. Joshi, RK, Carbone, P, Wang, FC, Kravets, VG, Su, Y, Grigorieva, IV, Wu, HA, Geim, AK, Nair, RR,"Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes."Science.,343 752–754 (2014). https://doi.org/10.1126/science.1245711.

  34. Kim, HW, Yoon, HW, Yoon, S-M, Yoo, BM, Ahn, BK., Cho, YH, Shin, HJ, Yang, H, Paik, U, Kwon, S, Choi, J-Y, Park, HB,"Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes."Science.,342 91–95 (2013). https://doi.org/10.1126/science.1236098.

  35. Park, JH, Park, JM,"Electrophoretic Deposition of Graphene Oxide on Mild Carbon Steel for Anti-Corrosion Application."Surf. Coat. Technol.,254 167–174 (2014). https://doi.org/10.1016/j.surfcoat.2014.06.007.

  36. Li, PF, Zhou, H, Cheng, X,"Investigation of a Hydrothermal Reduced Graphene Oxide Nano Coating on Ti Substrate and its Nano-Tribological Behavior."Surf. Coat. Technol., 254 298–304 (2014). https://doi.org/10.1016/j.surfcoat.2014.06.038.

  37. Srikanth, A, Mohammed Thalib Basha, G, Venkateshwarlu, B,"A Brief Review on Cold Spray Coating Process."Mater. Today Proc.,22 1390–1397 (2020). https://doi.org/10.1016/j.matpr.2020.01.482.

  38. Mahathanabodee, S, Palathai, T, Raadnui, S, Tongsri, R, Sombatsompop, N,"Effects of Hexagonal Boron Nitride and Sintering Temperature on Mechanical and Tribological Properties of SS316l/H-Bn Composites."Mater. Des. Complete., 588–597 (2013). https://doi.org/10.1016/j.matdes.2012.11.038.

  39. Kovalčíková, A, Balko, J, Balázsi, C, Hvizdoš, P, Dusza, J,"Influence of Hbn Content on Mechanical and Tribological Properties of Si3n4/Bn Ceramic Composites."J. Eur. Ceram. Soc., 34 3319–3328 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.021.

  40. Kalinin, GM, Fabritziev, SA, Singh, BN, Tahtinen, S, Zinkle, SJ,"Specification of Properties and Design Allowables for Copper Alloys used In Hhf Components of Iter."J. Nucl. Mater.,307–311 668–672 (2002). https://doi.org/10.1016/S0022-3115(02)01185-6.

  41. Peng, Q, Ji, W, De, S,"Mechanical Properties of the Hexagonal Boron Nitride Monolayer: Ab Initio Study."Comput. Mater. Sci.,56 11–17 (2012). https://doi.org/10.1016/j.commatsci.2011.12.029.

  42. Abu-Oqail, A, Ghanim, M, El-Sheikh, M, El-Nikhaily, A,"Effects of Processing Parameters of Tungsten–Copper Composites."Int. J. Refract. Met. Hard Mater.,35 207–212 (2012). https://doi.org/10.1016/j.ijrmhm.2012.02.015.

  43. Shi, Z, Fan, R, Yan, K, Sun, K, Zhang, M, Wang, C, Liu, X, Zhang, X,"Preparation of Iron Networks Hosted in Porous Alumina with Tunable Negative Permittivity and Permeability."Adv. Funct. Mater.,23 4123–4132 (2013). https://doi.org/10.1002/adfm.201202895.

  44. Fathy, A, El-Kady, O,"Thermal Expansion and Thermal Conductivity Characteristics of Cu–Al2o3 Nanocomposites."Mater. Des.,46 355–359 (2013). https://doi.org/10.1016/j.matdes.2012.10.042.

  45. Fathy, A, Shehata, F, Abdelhameed, M, Elmahdy, M,"Compressive and Wear Resistance of Nanometric Alumina Reinforced Copper Matrix Composites."Mater. Des.,36 100–107 (2012). https://doi.org/10.1016/j.matdes.2011.10.021.

  46. Tyagi, R, Xiong, D, Li, J,"Effect of Load and Sliding Speed on Friction and Wear Behavior of Silver/H-Bn Containing Ni-Base P/M Composites."Wear.,270 423–430 (2011). https://doi.org/10.1016/j.wear.2010.08.013.

  47. Münz, W,"Titanium Aluminum Nitride Films: A New Alternative To Tin Coatings."J. Vac. Sci. Technol. A.,4 2717–2725 (1986). https://doi.org/10.1116/1.573713.

  48. Musil, J, Hrubý, H,"Superhard Nanocomposite Ti1−Xalxn Films Prepared By Magnetron Sputtering."Thin Solid Films.,365 104–109 (2000). https://doi.org/10.1016/S0040-6090(00)00653-2.

  49. Santecchia, E, Hamouda, AMS, Musharavati, F, Zalnezhad, E, Cabibbo, M, Spigarelli, S,"Wear Resistance Investigation of Titanium Nitride-Based Coatings."Ceram. Int.,41 10349–10379 (2015). https://doi.org/10.1016/j.ceramint.2015.04.152.

  50. Panjan, P, Navinšek, B, Čekada, M, Zalar, A,"Oxidation Behaviour of Tialn Coatings Sputtered At Low Temperature."Vacuum.,53 127–131 (1999). https://doi.org/10.1016/S0042-207X(98)00407-2.

  51. Chen, H-Y, Lu, F-H,"Oxidation Behavior of Titanium Nitride Films."J. Vac. Sci. Technol. A.,23 1006–1009 (2005). https://doi.org/10.1116/1.1914815.

  52. Musil, J,"Hard Nanocomposite Coatings: Thermal Stability, Oxidation Resistance And Toughness."Surf. Coat. Technol.,207 50–65 (2012). https://doi.org/10.1016/j.surfcoat.2012.05.073.

  53. Bemporad E, Sebastiani M, and Pecchio C, De Rossi, S,"High Thickness Ti/Tin Multilayer Thin Coatings for Wear Resistant Applications.". Surf. Coat. Technol. 201 (2006) 2155–2165. https://doi.org/10.1016/j.surfcoat.2006.03.042

    Article  CAS  Google Scholar 

  54. Mogensen, M, Sammes, NM, Tompsett, GA "Physical, Chemical And Electrochemical Properties of Pure And Doped Ceria."Solid State Ion.,129 63–94 (2000). https://doi.org/10.1016/S0167-2738(99)00318-5.

  55. CRC Handbook of Chemistry and Physics: A Ready-Reference of Chemical and Physical Data, 85th ed Edited by David R. Lide (National Institute of Standards and Technology). CRC Press LLC: Boca Raton, FL. 2004. 2712 pp. $139.99. ISBN 0-8493-0485-7. J. Am. Chem. Soc. 127, 4542–4542 (2005). https://doi.org/10.1021/ja041017a.

  56. Jasinski, P, Suzuki, T, Anderson, HU,"Nanocrystalline Undoped Ceria Oxygen Sensor."Sens. Actuators B Chem.,95 73–77 (2003). https://doi.org/10.1016/S0925-4005(03)00407-6.

  57. Fu, Q, Saltsburg, H, Flytzani-Stephanopoulos, M,"Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts."Science.301 935–938 (2003). https://doi.org/10.1126/science.1085721.

  58. Kašpar, J, Fornasiero, P, Graziani, M,"Use Of Ceo2-Based Oxides In The Three-Way Catalysis."Catal. Today.,50 285–298 (1999). https://doi.org/10.1016/S0920-5861(98)00510-0.

  59. Sun, C, Hui, R, Roller, J,"Cathode Materials For Solid Oxide Fuel Cells: A Review."J. Solid State Electrochem.,14 1125–1144 (2010). https://doi.org/10.1007/s10008-009-0932-0.

  60. Yin, X, Hong, L, Liu, Z-L,"Oxygen Permeation through the LSCO-80/CeO2 Asymmetric Tubular Membrane Reactor."J. Membr. Sci.,268 2–12 (2006). https://doi.org/10.1016/j.memsci.2005.06.005.

  61. Özer, N,"Optical Properties And Electrochromic Characterization Of Sol–Gel Deposited Ceria Films."Sol. Energy Mater. Sol. Cells.,68 391–400 (2001). https://doi.org/10.1016/S0927-0248(00)00371-8.

  62. Feng, X, Sayle, DC, Wang, ZL, Paras, MS, Santora, B, Sutorik, AC, Sayle, TXT, Yang, Y, Ding, Y, Wang, X, Her, Y-S,"Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres."Science.,312 1504–1508 (2006). https://doi.org/10.1126/science.1125767.

  63. Asati A, Santra S, Kaittanis C, and Nath S, Perez, JM,"Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles.". Angew. Chem. Int. Ed Engl. 48 (2009) 2308–2312. https://doi.org/10.1002/anie.200805279

    Article  CAS  Google Scholar 

  64. Park, I-W, Lin, J, Moore, J, Khafizov, M, Hurley, D, Manuel, M, Allen, T,"Grain Growth And Mechanical Properties of CeO2-X Films Deposited On Si(100) Substrates By Pulsed Dc Magnetron Sputtering."Surf. Coat. Technol.,217 34–38 (2013). https://doi.org/10.1016/j.surfcoat.2012.11.068.

  65. Balakrishnan, G, Sundari, ST, Kuppusami, P, Mohan, PC, Srinivasan, MP, Mohandas, E, Ganesan, V, Sastikumar, D,"A Study of Microstructural And Optical Properties of Nanocrystalline Ceria Thin Films Prepared By Pulsed Laser Deposition."Thin Solid Films. 519 2520–2526 (2011). https://doi.org/10.1016/j.tsf.2010.12.013.

  66. Lee, H-G, Lee, Y-M, Jung, C-H, Hong, G-W,"Direct Deposition of CeO2 Films on Ni Metal Substrate By Chemical Vapor Deposition."Met. Mater.,6 261–265 (2000). https://doi.org/10.1007/BF03028221.

  67. De Souza, J, Silva, AGP da, Paes, HR,"Synthesis and Characterization Of CeO2 Thin Films Deposited By Spray Pyrolysis."J. Mater. Sci. Mater. Electron.,18 951–956 (2007). https://doi.org/10.1007/s10854-007-9287-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateshwarlu Bolleddu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, A., Mohammed Thalib Basha, G., Bolleddu, V. et al. Influence of Additives on Characteristics of Thermal Barrier Coatings: A short Review. Trans Indian Inst Met 76, 2567–2574 (2023). https://doi.org/10.1007/s12666-023-03014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03014-z

Keywords

Navigation