Skip to main content
Log in

Microstructural and Mechanical Properties of Aluminum Matrix Composite Reinforced with Cu-Zn-Al Particles Fabricated by Friction Stir Processing

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Cu-Zn-Al particles reinforced 6061Al composites were fabricated by friction stir processing (FSP). The microstructure and mechanical properties of the composites under the FSP and T6 heat treatment were investigated. Microstructure observation showed that Cu-Zn-Al particles were homogeneously distributed in the Al matrix. FSP resulted in grain refinement and the reduction of the number of β-Mg2Si, and T6 heat treatment promoted the precipitation of fine particles (β”-Mg2Si). The introduced Cu-Zn-Al particles in the FSPed composites still exhibited reversible phase transformation between martensite and austenite. The tensile strength of the FSPed composites was inferior to that of base metal, while the elongation of composites was obviously enhanced. The tensile strengths of composites after T6 heat treatment increased greatly. The results indicated that FSP is an effective way to produce Cu-Zn-Al particles/Al composites with good mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Song Y, Yang X, and Lei C, Mater Des 55 (2014) 9.

    Article  CAS  Google Scholar 

  2. Yo S H K, Han G, and Nobu H, Mater Sci Eng A 613 (2014) 163.

    Article  Google Scholar 

  3. Ma Z Y, Metall Mater Trans A 39 (2008) 642.

    Article  Google Scholar 

  4. Mishra R S and Ma Z Y, Mat Sci Eng R 50 (2010) 1.

    Article  Google Scholar 

  5. Moharami A, Razaghian A, and Paidar M, Mater Chem Phys 250 (2020) 1230.

    Article  Google Scholar 

  6. Prasad R, Tewari S P, and Singh J K, Mater Res Express 6 (2019) 9.

    Google Scholar 

  7. Liu F, Ji Y, and Sun Z, J Alloy Compd 829 (2020) 154452.

  8. Ammouri A H, Kridli G, and Ayoub G, J Mater Process Tech 222 (2015) 301.

    Article  CAS  Google Scholar 

  9. Xu N and Bao Y F, Mater Sci Eng A 655 (2016) 292.

    Article  CAS  Google Scholar 

  10. Wen W, Kuaishe W, and Qiang G, Rare Metal Mat Eng 41 (2012) 1522.

    Article  Google Scholar 

  11. Xu W, Liu J, and Zhu H, Mater Design 47 (2013) 599.

    Article  CAS  Google Scholar 

  12. Sahraeinejad S, Izadi H, and Haghshenas M, Mater Sci Eng A 626 (2015) 505.

    Article  CAS  Google Scholar 

  13. Morisada Y, Fujii H, and Nagaoka T, Scripta Mater 55 (2006) 1067.

    Article  CAS  Google Scholar 

  14. Essam and Moustaf, Materials 10 (2017) 9.

    Google Scholar 

  15. Ke L, Huang C, and Xing L, J Alloy Compd 503 (2010) 494.

    Article  CAS  Google Scholar 

  16. Lee I, Kao P, and Ho N, Intermetallics 16 (2008) 1104.

    Article  CAS  Google Scholar 

  17. Aruri D, Adepu K, and Bazavada K, J Mater Res Technol 2 (2013) 362.

    Article  CAS  Google Scholar 

  18. Hosseini S, Ranjbar K, Dehmolaeia R, and Amirani A, J Alloy Compd 622 (2015) 725.

    Article  CAS  Google Scholar 

  19. Huang G Q, Yan Y F, and Wu J, J Alloy Compd 786 (2019) 257.

    Article  CAS  Google Scholar 

  20. Zarinejad M and Yong L, Adv Funct Mater 82 (2008) 2789.

    Article  Google Scholar 

  21. Wei Z G, Tang C Y, and Lee W B, J Mater Process Technol 69 (1997) 68.

    Article  Google Scholar 

  22. Ni D, Wang J, and Ma Z Y, J Mater Sci Technol 162 (2016) 2.

    Google Scholar 

  23. Ni D R, Wang J J, Zhou Z N, and Ma Z Y, J Alloy Compd 586 (2014) 368.

    Article  CAS  Google Scholar 

  24. Jani M, Leary M, and Subic A, Mater Design 1078 (2014) 56.

    Google Scholar 

  25. Asa V, Del K, and Ja N, Acta Mater 599 (2008) 58.

    Google Scholar 

  26. Agnihotri R and Bhardwaj S, Int J Comput Mat Sci 229 (2016) 4.

    Google Scholar 

  27. Porter G A, Liaw P K, and Tiegs T N, JOM 52 (2000) 52.

    Article  CAS  Google Scholar 

  28. Thorat R R, Risanti D D, and Martín D S, J Alloy Compd 477 (2009) 307.

    Article  CAS  Google Scholar 

  29. Sato Y S, Urata M, and Kokawa H, Metall Mater Trans A 33 (2002) 625.

    Article  Google Scholar 

  30. Dixit M, Newkirk J W, and Mishra R S, Scripta Mater 56 (2007) 541.

    Article  CAS  Google Scholar 

  31. Zina N, Zahaf S, and Bouaziz S A, J Fail Anal Prev 19 (2019) 1698.

    Article  Google Scholar 

  32. Sato Y S, Kokawa H, and Enomoto M, Metall Mater Trans A 30 (1999) 2429.

    Article  Google Scholar 

  33. Edwards G A, Stiller K, Dunlop G L, and Couper M J, Acta Mater 46 (1998) 3893.

    Article  CAS  Google Scholar 

  34. Kim J, Lee Y, and Paik, Ieee T Compon Pack T 367 (2003) 26.

    Google Scholar 

  35. Bra M and Alexandrov, Ieee T Comp Pack Man 78 (1994) 17.

  36. Sato S, Urata M, and Kokawa H, Metall Mater Trans A 625 (2002) 33.

    Google Scholar 

  37. Wei Z G, Tang C Y, and Lee W B, J Mater Process Tech 69 (1997) 68.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant nos. 51865006 and 52165068), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant nos. 19KJA430001 and 18KJA460001), Guangxi Natural Science Foundation Project (Grant No. 2020GXNSFAA297004) and Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi (Grant No. 2021KY0787).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yang or Kai Jian Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Lu, K.J., Liu, Z. et al. Microstructural and Mechanical Properties of Aluminum Matrix Composite Reinforced with Cu-Zn-Al Particles Fabricated by Friction Stir Processing. Trans Indian Inst Met 75, 1471–1479 (2022). https://doi.org/10.1007/s12666-021-02495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02495-0

Keywords

Navigation