Skip to main content
Log in

Effect of WC Mass Fraction on Friction-Wear Performance of Laser-Cladded Stellite-21-WC Coatings at High Temperature

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

WC-reinforced Stellite-21 coatings were prepared on AISI H13 steel by laser cladding (LC). The microstructure, phases and hardness of obtained coatings were analyzed by super-depth of field microscope (SDFM), X-ray diffraction (XRD) and microhardness tester, respectively. The effects of WC mass fraction on the coefficients of friction (COF) and wear rate of WC-reinforced Stellite-21 coatings at 550 °C were investigated. The results indicated that the undissolved WC particles act as the skeleton for the Stellite-21 coating, which has a positive effect on the improvement of hardness. The average COFs of Stellite-21-10%WC, Stellite-21-20%WC and Stellite-21-30%WC coatings are 0.447, 0.383 and 0.349, respectively, and the corresponding wear rates are 192.4, 148.6 and 101.4 μm3 N−1 mm−1, respectively, showing that the wear resistance increases with the increase in the WC mass fraction, and the wear mechanism is combined by the adhesive wear, abrasive wear and slight oxidative wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fernandesa FAP, Heckb SC, Piconec CA, Casteletti LC. Surface and Coatings Technology, 2020, 381: 125216

    Article  Google Scholar 

  2. Kashani H, Amadeh A, Ghasemi H M. Wear, 2007, 262: 800-806

    Article  CAS  Google Scholar 

  3. Kumar S, Maity SR, Patnaik L. Ceramics International, 2020, 46: 17280-17294

    Article  CAS  Google Scholar 

  4. Mellouli D ,Haddar N ,Koster A ,Ayedi H F. Engineering Failure Analysis, 2014, 45: 85-95

    Article  CAS  Google Scholar 

  5. Anders P, Sture H, Jens B. Surface and Coatings Technology, 2005, 191: 216-227

    Article  Google Scholar 

  6. Xue S,Yang T, Guo RD, Deng AL, Liu XD, Zheng LX. Engineering Failure Analysis, 2021, 120: 105083

    Article  CAS  Google Scholar 

  7. Klobčara D, Tušeka J, Taljat B. Materials Science and Engineering A, 2008, 472:198-207

    Article  Google Scholar 

  8. Wang B, Zhao XF, Li WZ, Qin M, Gu JF. Applied Surface Science, 2018, 431: 39-43

    Article  CAS  Google Scholar 

  9. Beake BD, Ning L, Gey C, Veldhuis SC, Komarov A, Weaver A, Khanna M, Fox-Rabinovich GS. Surface and Coatings Technology, 2015, 279: 118-125

    Article  CAS  Google Scholar 

  10. Yang HP, Wu XC, Cao GH, Yang Z. Surface and Coatings Technology, 2016, 307: 506-516

    Article  CAS  Google Scholar 

  11. Chhabra P, Kaur M, Singh S. Materials Today: Proceedings,2020,33: 1518-1530

    Article  CAS  Google Scholar 

  12. Liu B, Wang B, Yang XD, Zhao XF, Qin M, Gu JF. Applied Surface Science, 2019, 483: 45-51

    Article  CAS  Google Scholar 

  13. Zhang WC, Liu LB, Zhang MT, Huang GX, Liang JS, Li X, Zhang LG. Transactions of Nonferrous Metals Society of China,2015,25: 3700-3707

    Article  CAS  Google Scholar 

  14. Hao JB, Hu FT, Le XW, Liu H, Yang HF, Han, J. Journal of Materials Processing Technology,2020,291: 117036

    Article  Google Scholar 

  15. Wu S, Liu ZH, Huang XF, Wu YF, Gong Y. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105675

    Article  CAS  Google Scholar 

  16. Lu HF, Cai J, Luo KY, Xing F, Zhang QL, Yao JH, Lu JZ. Surface and Coatings Technology,2021,408: 126808

    Article  CAS  Google Scholar 

  17. Bartkowski D, Kinal G. International Journal of Refractory Metals and Hard Materials, 2016, 58: 157-164

    Article  CAS  Google Scholar 

  18. Hassani FZ, Ketabchi M, Bruschi S, Ghiotti A. Journal of Materials Science, 2016, 51: 4495-4508

    Article  CAS  Google Scholar 

  19. Ganesh P, Moitra A, Tiwari P, Sathyanarayanan S, Kumar H, Rai SK, Kaul R, Paul CP, Prasad RC, Kukreja LM. Materials Science and Engineering: A,2010,527: 3748-3756

    Article  Google Scholar 

  20. Karmakar DP, Muvvala G, KumarNath A. Surface and Coatings Technology, 2020, 384:125331

    Article  Google Scholar 

  21. Roy S, Sridharan N, Cakmak E, Ghaednia H, Gangopadhyay A, Qu J. Wear, 2021, 482: 203990

    Article  Google Scholar 

  22. Lin YH, Lei YP, Li XQ, Zhi XH, Fu HG. Optics and letter in Engineering, 2016, 82: 48-55

    Google Scholar 

  23. Zeng XB, Wang QT, Chen CR, Lian GF, Huang X. Surface and Coatings Technology, 2021, 42: 127781

    Article  Google Scholar 

  24. Erturk, AT, Sahin, M, Aras, M. Transactions of the Indian Institute of Metals, 2017, 70: 1233-1240

    Article  CAS  Google Scholar 

  25. Bartkowski D, Bartkowska A. International Journal of Refractory Metals and Hard Materials, 2017, 64: 20-26

    Article  CAS  Google Scholar 

  26. Karmakar DP, Muvvala G, Nath AK. Surface and Coatings Technology, 2021, 422: 127498

    Article  CAS  Google Scholar 

  27. Kong WC, Li KM, Hu J. Optics & Laser Technology, 2021,142:107214

    Article  CAS  Google Scholar 

  28. Xiao Q, Sun WL, Yang KX, Xing XF, Chen ZH, Zhou HN, Lu J. Surface and Coatings Technology, 2021,420: 127341

    Article  CAS  Google Scholar 

  29. Xu PH, Zhu LD, Xue PS, Yang ZC, Wang SH, Ning JS, Meng GR, Lan Q, Qin SQ. Ceramics International,2022,48: 9218-9228

    Article  CAS  Google Scholar 

  30. Fernández MR, García A, Cuetos JM, González R, Noriega A, Cadenas M. Wear, 2015, 324: 80-89

    Article  Google Scholar 

  31. Van Acker K, Vanhoyweghen D, Persoons R, Vangrunderbeek J. Wear, 2005, 258: 194-202

    Article  Google Scholar 

  32. Li WY, Yang XF, Xiao JP, Hou QM. Ceramics International,2021,47: 28754-28763

    Article  CAS  Google Scholar 

  33. Farahmand P, Kovacevic R. Surface and Coatings Technology, 2015, 276: 121-135

    Article  CAS  Google Scholar 

  34. Zhang KD, Deng JX, Meng R, Lei ST, Yu XM. International Journal of Refractory Metals and Hard Materials, 2016, 57: 101-114

    Article  CAS  Google Scholar 

  35. Jeyaprakash N, Yang CH. Transactions of the Indian Institute of Metals, 2020,73:1527-1533

    Article  CAS  Google Scholar 

  36. Hu YJ, Wang ZX, Pang M. Materials Today Communications, 2022,31:103357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong Dejun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Dejun, K. Effect of WC Mass Fraction on Friction-Wear Performance of Laser-Cladded Stellite-21-WC Coatings at High Temperature. Trans Indian Inst Met 75, 3095–3104 (2022). https://doi.org/10.1007/s12666-022-02694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02694-3

Keywords

Navigation