Skip to main content
Log in

X-ray Diffraction for the Determination of Residual Stress of Crystalline Material: An Overview

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Though there are a variety of experimental techniques available for residual stress measurements, diffraction-based measurements have the unique advantage of estimating the individual components of the residual strain matrix in a crystalline material. This is then converted to residual stresses with appropriate continuum elasticity model(s) and X-ray elastic constants. In particular, measurements based on electron or neutron diffractions have their complexities or availability issues. The laboratory X-ray diffraction, on the other hand, may provide an easy resource and an effective tool. Such measurements range from two tilt methods to more extended d-sin2ψ measurements and multiple {hkil} grazing incident X-ray diffraction. Measurements can even be conducted on single crystals with micro-Laue diffraction and extended to stress ODF (orientation distribution function) calculations. These techniques are unquestionably extremely specialized, where measurement uncertainty plays an important role in the effectiveness plus reproducibility of the data. Unfortunately, standard textbooks or review articles typically describe some, but not all, of the techniques. In this overview, different techniques of X-ray diffraction for the determination of residual stresses in crystalline material have been summarized. It is hoped that potential users may benefit from the deliberations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heindlhofer K, Evaluation of Residual Stress, McGraw-Hill Book Company (1948).

    Google Scholar 

  2. Osgood W R, Residual Stresses in Metals and Metal Construction, Reinhold Publishing Corporation (1954).

    Google Scholar 

  3. Almen J O, and Black P H, Residual Stresses and Fatigue in Metals, McGraw-Hill (1963).

    Google Scholar 

  4. Noyan I C, and Cohen J B, Residual Stress: Measurement by Diffraction and Interpretation, Springer (2013).

    Google Scholar 

  5. Withers P J, and Bhadeshia, H K D H, Residual Stress. Part 1, 355.

  6. Cullity B D, Elements of X-ray Diffraction, Addison-Wesley Publishing (1956).

    Google Scholar 

  7. Verlinden B, Driver J, Samajdar I, and Doherty R D, Thermo-Mechanical Processing of Metallic Materials, Elsevier (2007).

    Google Scholar 

  8. Schneider E, Hauk V, Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, Amsterdam (1997), p 522.

    Google Scholar 

  9. Macherauch E, Adv Surf Treat 4 (2014) 1.

    Google Scholar 

  10. van Houtte P, and de Buyser L, Acta Metall Mater 41 (1993) 323.

    Article  Google Scholar 

  11. Withers P J, and Bhadeshia H, Residual Stress. Part 1—Measurement Techniques (2016).

  12. Bragg W L, Proc R Soc Lond Ser A Contain Pap Math Phys Charact 89 (1913) 248.

    CAS  Google Scholar 

  13. Loffe A F, and Kirpitcheva M, Phil Mag 43 (1922) 204.

    Article  Google Scholar 

  14. Aksenov G J, Appl Phys (USSR) 6 (1929) 3.

    Google Scholar 

  15. Rossini N S, Dassisti M, Benyounis K Y, and Olabi A-G, Mater Des 35 (2012) 572.

    Article  Google Scholar 

  16. Thool K, Patra A, Fullwood D, Krishna K V M, Srivastava D, and Samajdar I, Int J Plast 133 (2020) 102785.

  17. Heyn E, J Inst Met 12 (1914) 1.

    Google Scholar 

  18. Creţu S S, and Popinceanu N G, Wear 105 (1985) 153.

    Article  Google Scholar 

  19. Wawszczak R, Baczmański A, Braham C, Seiler W, Wróbel M, Wierzbanowski K, and Lodini A, Philos Mag 91 (2011) 2263.

    Article  CAS  Google Scholar 

  20. Ortiz A L, Tian J W, Villegas J C, Shaw L L, and Liaw P K, Acta Mater 56 (2008) 413.

    Article  CAS  Google Scholar 

  21. Bruno G, Ceretti M, Girardin E, Giuliani A, and Manescu A, Scr Mater 51 (2004) 999.

    Article  CAS  Google Scholar 

  22. Carpenter K, and Tabei A, Materials 13 (2020) 255.

    Article  CAS  Google Scholar 

  23. Zijlstra G, Groen M, Post J, Ocelík V, and de Hosson J T M, Mater Des 105 (2016) 375.

    Article  CAS  Google Scholar 

  24. Noyan I C, Huang T C, and York B R, Crit Rev Solid State Mater Sci 20 (1995) 125.

    Article  CAS  Google Scholar 

  25. Wang Z, and Gong B, Residual Stress in the Forming of Materials. Handbook of Residual Stress and Deformation of Steel (2002), p 141.

  26. Bock H, Mechanische Eigenschaften von Wolframkarbid-Kobalt-Legierungen (1976).

  27. Thomas G, Electron Microscopy and Strength of Crystals (1963).

  28. Jiang J, Britton T B, and Wilkinson A J, Acta Mater 61 (2013) 5895.

    Article  CAS  Google Scholar 

  29. Byeon J W, Liu J, Hopkins M, Fischer W, Garimella N, Park K B, Brady M P, Radovic M, El-Raghy T, and Sohn Y H, Oxid Met 68 (2007) 97.

    Article  CAS  Google Scholar 

  30. Jain L, Bajpai R, Basu R, Misra D S, and Samajdar I, Cryst Growth Des 17 (2017) 1514.

    Article  CAS  Google Scholar 

  31. Kumar G, Kanjarla A K, Lodh A, Singh J, Singh R, Srivastava D, Dey G K, Saibaba N, Doherty R D, and Samajdar I, Metall Mater Trans A 47 (2016) 3882.

    Article  CAS  Google Scholar 

  32. van Acker K, de Buyser L, Celis J-P, and van Houtte P, J Appl Crystallogr 27 (1994) 56.

    Article  Google Scholar 

  33. Marra W C, Eisenberger P, and Cho A Y, J Appl Phys 50 (1979) 6927.

    Article  CAS  Google Scholar 

  34. Peng J, Ji V, Seiler W, Tomescu A, Levesque A, and Bouteville A, Surf Coat Technol 200 (2006) 2738.

    Article  CAS  Google Scholar 

  35. Kohli D, Rakesh R, Sinha V P, Prasad G J, and Samajdar I, J Nucl Mater 447 (2014) 150.

    Article  CAS  Google Scholar 

  36. Welzel U, Ligot J, Lamparter P, Vermeulen A C, and Mittemeijer E J, J Appl Crystallogr 38 (2005) 1.

    Article  Google Scholar 

  37. Mukherjee D, Tewary U, Kumar S, Karagadde S, Verma R K, Sambandam M, and Samajdar I, Mater Sci Technol 36 (2020) 1020.

    Article  CAS  Google Scholar 

  38. Kumar G, Kanjarla A K, Lodh A, Singh J, Singh R, Srivastava D, Dey G K, Saibaba N, Doherty R D, and Samajdar I, Metall Mater Trans A Phys Metall Mater Sci (2016). https://doi.org/10.1007/s11661-016-3526-3.

    Article  Google Scholar 

  39. Kumar G, Lodh A, Singh J, Singh R, Srivastava D, Dey G K, and Samajdar I, CIRP J Manuf Sci Technol 19 (2017) 176.

    Article  Google Scholar 

  40. Su R, Li L, Wang Y D, Nie Z H, Ren Y, Zhou X, and Wang J, AIP Adv 8 (2018) 55126.

    Article  Google Scholar 

  41. Lodh A, Tak T N, Prakash A, Guruprasad P J, Hutchinson C, and Samajdar I, Metall Mater Trans A Phys Metall Mater Sci (2017). https://doi.org/10.1007/s11661-017-4280-x.

    Article  Google Scholar 

  42. Lodh A, Tak T N, Prakash A, Guruprasad P J, Keralavarma S M, Benzerga A A, Hutchinson C, and Samajdar I, Metall Mater Trans A Phys Metall Mater Sci (2019). https://doi.org/10.1007/s11661-019-05421-8.

    Article  Google Scholar 

  43. Lodh A, Tewary U, Singh R P, Tak T N, Prakash A, Alankar A, Guruprasad P J, and Samajdar I, Metall Mater Trans A Phys Metall Mater Sci (2018). https://doi.org/10.1007/s11661-018-4964-x.

    Article  Google Scholar 

  44. Lodh A, Tak T N, Prakash A, Guruprasad P J, Hutchinson C, and Samajdar I, Metall Mater Trans A 48 (2017) 5317.

    Article  CAS  Google Scholar 

  45. Kallend J S, and Huang Y C, Met Sci 18 (1984) 381.

    Article  CAS  Google Scholar 

  46. Dorman M, Toparli M B, Smyth N, Cini A, Fitzpatrick M E, and Irving P E, Mater Sci Eng A 548 (2012) 142.

    Article  CAS  Google Scholar 

  47. Sahoo S K, Hiwarkar V D, Krishna K V M, Samajdar I, Pant P, Pujari P K, Dey G K, Srivastav D, Tiwari R, and Banerjee S, Mater Sci Eng A 527 (2010) 1427.

    Article  Google Scholar 

  48. He B B, Two-Dimensional X-ray Diffraction, John Wiley & Sons (2018).

    Book  Google Scholar 

  49. Borbély A, and Groma I, Appl Phys Lett 79 (2001) 1772.

    Article  Google Scholar 

  50. Ungár T, and Borbély A, Appl Phys Lett 69 (1996) 3173.

    Article  Google Scholar 

  51. Vermeulen A C, Adv X-ray Anal 44 (2001) 128.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indradev Samajdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Residual Stress and Ewald Sphere Construction

Let’s consider (see Fig. 11) the diffracting crystal at the center of Ewald sphere of 1/λ with incident beam entering from point A satisfying Bragg’s law. B defines the origin of reciprocal lattice. At no stress state condition, diffracted beam exits from point D. Therefore, length of vector DB is equal to \({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {d_{hkl} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${d_{hkl} }$}}\). According to state of residual stress, diffraction peak will shift. Assuming compressive state here for the same crystal, diffracted beam now exits from point C and length of vector CB is equal to \({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {d_{{hkl, {\text{RS}}}} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${d_{{hkl, {\text{RS}}}} }$}}\). The length difference between vector DB and CB arises from residual stress.

Fig. 11
figure 11

Ewald sphere reconstruction due to residual stress development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodh, A., Thool, K. & Samajdar, I. X-ray Diffraction for the Determination of Residual Stress of Crystalline Material: An Overview. Trans Indian Inst Met 75, 983–995 (2022). https://doi.org/10.1007/s12666-022-02540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02540-6

Keywords

Navigation