Skip to main content

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 23))

Abstract

X-ray techniques are non-destructive material analysis methods to provide information about lattice constant, strain, material composition, layer thickness, defect density, interface quality, grain size, texture, etc. This chapter begins with the basic definitions in crystallography and crystal defects, x-ray diffraction, and then the discussion extend to the x-ray applications for material analysis ranging from powder diffraction, and grazing-angle reflectivity measurements to high-resolution measurements. The content gives also examples for how to apply x-ray diffraction to study the nano-scale materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger, H. (2012). The mystery of a new kind of rays: The story of Wilhelm Conrad Roentgen and his discovery of x-rays. ISBN: 1475239971.

    Google Scholar 

  2. Roentgen, W. C. (1896). On a new kind of rays. Translation from German to English of Roentgen’s first x-ray publication by A. Stanton. Science, 3, 227–231.

    Google Scholar 

  3. Föll, H., & Kolbesen, B. (1976). Aggllomerate von Zwischengitteratomen (Swirl-Defekte) in Silizium—ihre Bedeutung für Grundlagenforschung und Technologie Jahrbuch der Akademie der Wissenschaft in Göttingen, 27.

    Google Scholar 

  4. Nabarro, F. R. N., & Hirth, J. P. (2007). Dislocations in solids, Vol. 13, ISSN-13: 978-0-444-51888-0.

    Google Scholar 

  5. Benedek, G. Point and extended defects in semiconductors. Springer, Nato Science Series of B, ISBN 978-1-4684-5709-4.

    Google Scholar 

  6. Sumino, K. (1990). Defect control in semiconductors. ISBN 978-0-444-88429-9.

    Google Scholar 

  7. Bioud, Y. A., Boucherif, A., Myronov, M., Soltani, A., Patriarche, G., Braidy, N., Jellite, M., Drouin, D., & Arès, R. (2019). Uprooting defects to enable high-performance III–V optoelectronic devices on silicon. Nature Communication, 10, Article number: 4322.

    Google Scholar 

  8. Radamson, H. H., He, X., Zhang, Q., et al. (2019). Miniaturization of CMOS. Micromachines-Basel, 10, 293.

    Article  Google Scholar 

  9. People, R., & Bean, J. C. (1985). Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures. Applied Physics Letter, 47, 229.

    Google Scholar 

  10. Dodson, B. W., & Tsao, J. Y. (1988). Stress dependence of dislocation glide activation energy in singlecrystal silicon-germanium alloys up to 2.6 GPa. Physics Review B, 38, 12383.

    Google Scholar 

  11. Dodson, B. W., & Tsao, J. Y. (1989). Scaling relations for strained-layer relaxation. Applied Physics Letters, 55, 1345.

    Article  Google Scholar 

  12. Yue, L., Nix, W. D., Griffin, P. B., & Plummer, J. D. (2005). Critical thickness enhancement of epitaxial SiGe films grown on small structures. Journal of Applied Physics, 97, 43519.

    Article  Google Scholar 

  13. Radamson, H. H., Bentzen, A., Menon, C., & Landgren, G. (2002). Observed critical thickness in selectively and non-selectively grown Si1_xGex layers on patterned substrates. Physica Scripta, T101, 42.

    Article  CAS  Google Scholar 

  14. Wang, G., Luo, J., Liu, J., Yang, T., Xu, Y., Li, J., Yin, H., Yan, J., Zhu, H., Zhao, C., et al. (2017). pMOSFETs featuring ALD W filling metal using SiH4 and B2H6 precursors in 22 nm node CMOS technology. Nanoscale Research Letters, 12, 306.

    Article  Google Scholar 

  15. Cullity, E. D., & Stock, S. R. (1958). Elements of x-ray diffraction. Addison-Wesley Publishing Company. ISBN-13: 978-0201610918

    Google Scholar 

  16. Synchrotron radiation research in materials science. MRS Bulletin, June 2016.

    Google Scholar 

  17. Jenkins, R., & Snyder, R. L. (1996). Introduction to x‐ray powder diffractometry. Willey Online Library. ISBN: 9780471513391

    Google Scholar 

  18. Jürgen Buschow, K. H., Cahn, R. W., & Veyssière, P., et al. (2001). Encyclopedia of materials: Science and technology. Elsevier. ISBN 978-0-08-043152-9

    Google Scholar 

  19. Radamson, H. H., & Thylen, L. (2014). Monolithic nanoscale photonics electronics integration in silicon and other group IV elements. Academic Press. ISBN: 978-012-419-975-0

    Google Scholar 

  20. Ayers, J. E. (1994). Measurement of threading dislocation densities in semiconductor crystals by XRD. Journal of Crystal Growth, 135, 71–77

    Google Scholar 

  21. Ayers, J. E., Ghandhi, K., & Schowalter, L. J. (1992). Journal of Crystal Growth, 125, 329.

    Article  CAS  Google Scholar 

  22. Hordon, M. J., & Averbach, B. L. (1961). Acta Met9, 237.

    Google Scholar 

  23. Nabarro, F. R. N. (1987). Theory of crystal dislocations (pp. 51–56). Dover.

    Google Scholar 

  24. Stehle, H., & Seeger, A. (1956). Z. Physik, 146, 217.

    Article  Google Scholar 

  25. Scherrer, P. (1918). Nachr. Göttinger Ges, 98.

    Google Scholar 

  26. Halliwell, M. A. G., Lyons, M. H., & Hill, M. J. (1984). The interpretation of X-ray rocking curves from III–V semiconductor device structures. Journal of Crystal Growth, 68, 523.

    Article  CAS  Google Scholar 

  27. Vandenberg, J. M., Macrander, A. T., Hamm, R. A., & Panish, M. B. (1991). Physical Review B, 44, 3991.

    Article  CAS  Google Scholar 

  28. Liu, E., & Wu, X. X-ray diffraction analysis of III-V superlattices: Characterization, simulation and fitting. Project work, Corpus ID: 131768216.

    Google Scholar 

  29. Radamson, H. H., & Thylen, L. (2014). Monolithic nanoscale photonics-electronics integration in silicon and other group 1V elements. Elsevier Academic Press. ISBN: 978-012-419-975-0.

    Google Scholar 

  30. Radamson, H. H., & Hållstedt, J. (2005). Application of high-resolution x-ray diffraction for detecting defects in SiGe(C) materials. Journal of Physics: Condensed Matter, 17, S231517.

    Google Scholar 

  31. Hansson, G. V., Radamsson, H. H., & Ni, W.-X. (1995). Strain and relaxation in Si-MBE structures studied by reciprocal space mapping using high resolution X-ray diffraction. Journal of Materials Science: Materials in Electronics, 6, 292.

    CAS  Google Scholar 

  32. Fewster, P. F. (2000). X-ray scattering from semiconductors. Imperial College Press. ISBN: 1-86094-360-8.

    Google Scholar 

  33. Wortman, J. J., & Evans, R. A. (1965). Young’s modulus, shear modulus and Poisson’s ratio in silicon and germanium. Journal of Applied Physics, 36, 153–156.

    Article  CAS  Google Scholar 

  34. Nikanorov, S. P., & Kardashev, B. K. (1985). Elasticity and dislocation in elasticity of crystals. “Nauka” Publishing House.

    Google Scholar 

  35. Moontragoon, P., Ikonić, Z., & Harrison, P. (2007). Band structure calculations of Si–Ge–Sn alloys: Achieving direct band gap materials. Semiconductor Science and Technology, 22(7), 742–748.https://doi.org/10.1088/0268-1242/22/7/012

  36. Nikanorov, S. P., Burenkov, Y. A., & Stepanov, A. V. (1971). Elastic properties of silicon. Sov. Phys. Solid State, 13, 2516–2519.

    Google Scholar 

  37. McSkimin, H. J., & Andreatch, P. (1972). Elastic moduli of diamond as a function of pressure and temperature. Journal of Applied Physics, 43, 2944–2948.

    Article  CAS  Google Scholar 

  38. Herzog, H.-J. (1993). X-ray analysis of strained layer configurations. Solid State Phenomena, 32, 523–534.

    Article  Google Scholar 

  39. Aella, P., Cook, C., Tolle, J., Zollner, S., Chizmeshya, A. V. G., & Kouvetakis, J. (2004). Structural and optical properties of SnxSiyGe1-x-y alloys. Applied Physics Letters, 84, 888.

    Article  CAS  Google Scholar 

  40. Radamson, H. H., Zhu, H., Wu, Z., He, X., Lin, H., Liu, J., Xiang, J., Kong, Z., Xiong, W., Li, J., & Cui, H. (2020). State of the art and future perspectives in advanced CMOS technology. Nanomaterials, 10(8), 1555.

    Google Scholar 

  41. Wang, G., Kolahdouz, M., Luo, J., Qin, C., Gu, S., Kong, Z., Yin, X., Xiong, W., Zhao, X., Liu, J., Yang, T. (2020). Growth of SiGe layers in source and drain regions for 10 nm node complementary metal-oxide semiconductor (CMOS). Journal of Materials Science: Materials in Electronics, 31(1), 26–33, 5.

    Google Scholar 

  42. Hållstedt, J., Blomqvist, M., Persson, P. O. A., Hultman, L., & Radamson, H. H. (2004). The effect of carbon and germanium on phase transformation of nickel on Si1-x-yGexCy epitaxial layers. Journal of Applied Physics, 95, 2397.

    Article  Google Scholar 

  43. Wang, G., Moeen, M., Abedin, A., Xu, Y., Luo, J., Guo, Y., Qin, C., Tang, Z., Yin, H., et al. (2015). Impact of pattern dependency of SiGe layers grown selectively in source/drain on the performance of 22 nm node pMOSFETs. Solid-State Electronics, 114, 43–48.

    Article  CAS  Google Scholar 

  44. Wang, G., Abedin, A., Moeen, M., Kolahdouz, M., Luo, J., Chen, T., & Radamson, H. H. (2015). Integration of highly-strained SiGe materials in 14 nm and beyond nodes FinFET technology. Solid-State Electronics, 103, 222–228.

    Article  CAS  Google Scholar 

  45. Kojima, I., & Li, B. (1999). Structural characterization of thin films by x-ray reflectivity. The Rigaku Journal, 16(2), 31–42.

    CAS  Google Scholar 

  46. Levine, J., Cohen, J. B., Chung, Y. W., & Georgopoulos, P. (1989). Grazing-incidence small-angle x-ray scattering: New tool for studying thin film growth. Journal of Applied Crystallography, 22, 528.

    Article  CAS  Google Scholar 

  47. Levine Parrill, J. R., Georgopoulos, P., Chung, Y.-W., & Cohen, J. B. (1993). GISAXS—Glancing incidence small angle X-ray scattering. Journal of Physics IV France 3-C8, 411–417.

    Google Scholar 

  48. Jun, Y. S., Lee, B., & Waychunas, G. A. (2010). In situ observations of nanoparticle early development kinetics at mineral-water interfaces. Environmental Science and Technology, 44, 8182–8189.

    Article  CAS  Google Scholar 

  49. Smilgies, D.-M., Busch, P., Posselt, D., & Papadakis, C. M. (2002). Characterization of polymer thin films with small-angle x-ray scattering under grazing incidence (GISAXS). Synchrotron Radiation News, 15(5), 35–42.

    Google Scholar 

  50. Als-Nielsen, J., & McMorrow, D. (2001). Elements of modern X-ray physics. John Wiley & Sons.

    Google Scholar 

  51. Müller-Buschbaum, P. (2003). Grazing incidence small-angle X-ray scattering: An advanced scattering technique for the investigation of nanostructured polymer films. Analytical and Bioanalytical Chemistry, 376(1), 3–10.

    Article  Google Scholar 

  52. Bunge, J. (1982). Texture analysis in materials science. Butterworths.

    Google Scholar 

  53. Roe, R. -J. (1965). Description of crystallite orientation in polycrystalline materials. III. General solution to pole figure inversion. Journal of Applied Physics, 36(1965), 2024. https://doi.org/10.1063/1.1714396

  54. Hahn, Th., Klapper, H., Muller, U., & Aroyo, M. I. (2016). Point groups and crystal classes. In International tables for crystallography (vol. A, Section 3.2.1, pp. 720–737).

    Google Scholar 

  55. Schwartz, A. J., Kumar, M., Adams, B. L., & Field, D. P. (2009). Electron backscatter diffraction in materials science (2nd ed.). Springer.

    Google Scholar 

  56. Attallah, M. M., Zabeen, S., Cernik, R. J., & Preuss, M. (2009). Comparative determination of the α/β phase fraction in α+β-titanium alloys using X-ray diffraction and electron microscopy. Materials Characterization, 60, 1248–1256.

    Article  CAS  Google Scholar 

  57. Bish, D. L., & Howard, S. A. (1998). Quantitative phase analysis using the Rietveld method. Journal of Applied Crystallography, 21, 86–91.

    Article  Google Scholar 

  58. Topas. (2003). Bruker AXS GmbH, Karlsruhe.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Radamson .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radamson, H.H. (2023). X-Ray Techniques. In: Analytical Methods and Instruments for Micro- and Nanomaterials. Lecture Notes in Nanoscale Science and Technology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-031-26434-4_1

Download citation

Publish with us

Policies and ethics