Skip to main content
Log in

Effect of Silicon Content on Mechanical Properties and Progressive Collapse Behavior of Closed-cell Aluminum Foams

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Aluminum foams with different silicon content have been produced by the Alporas method, where calcium and calcium carbonate are used as a thickening and foam agent, respectively. Performing quasi-static compression tests, mechanical behavior such as strain–stress diagram, deformation behavior, and energy absorption properties of the produced foams were investigated in this study. By adding silicon, calcium, and agitation of molten metal Si, SiO2, CaAl2Si2, CaAl2Si2O8 phases were created. These phases increased melt viscosity and improved foamability. The effect of physical properties, foam structure, alloy microstructure, pore size, and distribution on the mechanical behavior of metal foams was investigated in the present study. The foam with 8 wt% Si showed minimum density and maximum foamability, while it possessed a complete peak of stress. Thinner cell walls in Al–Si foams were observed, which could be attributed to the effect of silicon on melt’s surface tension. Results suggested that foams with 0 and 8 wt% Si are suitable for use as an energy absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Fluidity or castability, in casting terminology, is a term commonly used to describe the quality of the molten metal to flow and fill the mold cavity before it is stopped by solidification; this means fluidity in casting is not opposite of viscosity.

References

  1. M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson, H. Wadley, L. Gibson, Metal foams: a design guide, Elsevier2000.

    Google Scholar 

  2. J. Banhart, Metallic foams: challenges and opportunities, Eurofoam 2000 (2000) 13-20.

    Google Scholar 

  3. J. Banhart, Prog. Mater Sci. 46(6) (2001) 559

  4. J. Baumeister, J. Banhart, M. Materials & design 18(4–6) (1997) 217

  5. N. Babcsán, J. Banhart, D. Leitlmeier, Metal foams–manufacture and physics of foaming, In Proceedings of the International Conference Advanced Metallic Materials, Citeseer, 2003, p. 5.

  6. L. Cambronero, J. Ruiz-Roman, F. Corpas, J.R. Prieto, J. Mater. Process. Technol. 209(4) (2009) 1803

  7. Y. Wang, Aluminum foam stabilization by solid particles, (1996).

  8. M. Alizadeh, M. Mirzaei-Aliabadi, Compressive properties and energy absorption behavior of Al–Al2O3 composite foam synthesized by space-holder technique, Materials & Design 35 (2012) 419-424.

    Article  CAS  Google Scholar 

  9. W. Deqing, S. Ziyuan, Materials Science and Engineering: A 361(1-2) (2003) 45

  10. H.J. Luo, L. Zhang, Z.G. Xu, Y.S. Yang, In: Materials Science Forum. Trans Tech Publications Ltd, 2013, p. 356

  11. X. Xia, X. Chen, Z. Zhang, X. Chen, W. Zhao, B. Liao, B. Hur, Materials & Design (1980–2015) 56 (2014) 353

  12. L. Huang, H. Wang, D. Yang, F. Ye, Z. Lu, Effects of scandium additions on mechanical properties of cellular Al-based foams, Intermetallics 28 (2012) 71-76.

    Article  Google Scholar 

  13. S.-H. Park, Y.-S. Um, C.-H. Kum, B.-Y. Hur, Thermophysical properties of Al and Mg alloys for metal foam fabrication, Colloids and Surfaces A: Physicochemical and Engineering Aspects 263(1-3) (2005) 280-283.

    Article  CAS  Google Scholar 

  14. H.-j. YU, G.-c. YAO, Y.-h. LIU, Tensile property of Al-Si closed-cell aluminum foam, Transactions of Nonferrous Metals Society of China 16(6) (2006) 1335-1340.

    Article  CAS  Google Scholar 

  15. V. Kumar, H.M.A. Kumar, Effect of Silicon content on the Mechanical Properties of Aluminum Alloy, International Research Journal of Engineering and Technology 2(4) (2015) 74-86.

    Google Scholar 

  16. J.K. Khabushan, S.B. Bonabi, F.M. Aghbagh, A.K. Khabushan, Materials & Design 55 (2014) 792.

  17. W.-m. Zhao, Z. Zhang, Y.-n. Wang, X.-c. Xia, H. Feng, J. Wang, Compressive characteristics of closed-cell aluminum foams with different percentages of Er element, China Foundry 13(1) (2016) 36-41.

    Article  Google Scholar 

  18. I. Standard, ISO (E)(2011) Ref Number ISO 13314(13314) 1.

  19. T. Ferreira, W. Rasband, ImageJ user guide, ImageJ/Fiji 1 (2012).

    Google Scholar 

  20. M. Warmuzek, Aluminum-silicon casting alloys: an atlas of microfractographs, ASM international2004.

    Google Scholar 

  21. H. Kobatake, J. Brillo, J. Schmitz, P.-Y. Pichon, Journal of materials science 50(9) (2015) 3351.

  22. W. Mao, T. Noji, K. Teshima, N. Shinozaki, Metallurgical and Materials Transactions A 47(6) (2016) 3201.

  23. J. Banhart, D. Weaire, On the road again: metal foams find favor, Physics Today 55(7) (2002) 37-42.

    Article  CAS  Google Scholar 

  24. O. Osman, International Journal of Engineering Research and Applications 5(2) (2015) 109.

  25. Z.-L. Song, L.-Q. Ma, Z.-J. Wu, D.-P. Journal of materials science 35(1) (2000) 15.

  26. C. Yang, H. Nakae, The effects of viscosity and cooling conditions on the foamability of aluminum alloy, J. Mater. Process. Technol. 141(2) (2003) 202-206.

    Article  CAS  Google Scholar 

  27. S.H. Elahi, H. Abdi, H.R. Shahverdi, Investigating viscosity variations of molten aluminum by calcium addition and stirring, Mater. Lett. 91 (2013) 376-378.

    Article  CAS  Google Scholar 

  28. N. Babcsán, Miskolc Materials Science (2003).

  29. B.P. Binks, T.S. Horozov, Colloidal particles at liquid interfaces. Cambridge University Press (2006).

  30. S.H. Elahi, R.A. Jeshvaghani, H. Shahverdi, Influence of calcium addition and stirring on the cellular structure and foaming behavior of molten zinc, Appl. Phys. A 119(2) (2015) 533-538.

    Article  Google Scholar 

  31. M.G. Kalhapure, P.M. Dighe, Impact of silicon content on mechanical properties of aluminum alloys, Int. J. Sci. Res 4 (2015) 38-40.

    Google Scholar 

  32. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, P.J. Uggowitzer, In: Materials science forum. Trans Tech Publications Ltd, 2011, p. 274.

  33. S. Nallusamy, A Review on the Effects of Casting Quality, Microstructure and Mechanical Properties of Cast Al-Si-0.3 Mg Alloy, International Journal of Performability Engineering 12(2) (2016).

    Google Scholar 

  34. T. Kobayashi, H. Kim, M. Niinomi, Effect of calcium on mechanical properties of recycled aluminiumcasting alloys, Mater. Sci. Technol. 13(6) (1997) 497-502.

    Article  CAS  Google Scholar 

  35. K. Al-Helal, Y. Wang, I. Stone, Z.Y. Fan, Materials Science Forum, Trans Tech Publications Ltd, 2013, p. 117.

  36. E. Koza, M. Leonowicz, S. Wojciechowski, F. Simancik, Compressive strength of aluminium foams, Materials Letters 58(1-2) (2004) 132-135.

    Article  CAS  Google Scholar 

  37. M. Malekjafarian, S. Sadrnezhaad, Closed-cell Al alloy composite foams: Production and characterization, Materials & Design 42 (2012) 8-12.

    Article  CAS  Google Scholar 

  38. Y. Mu, G. Yao, Anisotropic compressive behavior of closed-cell Al–Si alloy foams, Materials Science and Engineering: A 527(4-5) (2010) 1117-1119.

    Article  Google Scholar 

  39. S. Sahu, A. Barnwal, D. Mondal, P. Jain, Indian Foundry Journal 59(8) (2013).

  40. S. Sahu, M. Goel, D. Mondal, S. Das, High temperature compressive deformation behavior of ZA27–SiC foam, Materials Science and Engineering: A 607 (2014) 162-172.

    Article  CAS  Google Scholar 

  41. H. Bayani, S. Mirbagheri, Strain-hardening during compression of closed-cell Al/Si/SiC+(TiB2 & Mg) foam, Mater. Charact. 113 (2016) 168-179.

    Article  CAS  Google Scholar 

  42. S. Sahu, A. Zahid, A study on manufacturing processes and compressive properties of zinc-aluminium metal foams, Illinois Journal of Mathematics 2015(48) (2004) 50.

    Google Scholar 

  43. U. Ramamurty, A. Paul, Variability in mechanical properties of a metal foam, Acta Mater. 52(4) (2004) 869-876.

    Article  CAS  Google Scholar 

  44. S. Nikanorov, M. Volkov, V. Gurin, Y.A. Burenkov, L. Derkachenko, B. Kardashev, L. Regel, W. Wilcox, Structural and mechanical properties of Al–Si alloys obtained by fast cooling of a levitated melt, Materials Science and Engineering: A 390(1-2) (2005) 63-69.

    Article  Google Scholar 

  45. D. Stauffer, A. Aharony, Introduction to Percolation Theory.. 2nd EdTaylor and Francis, London 181pp (1992).

    Google Scholar 

  46. J. Jerz, N. Mináriková, L. Marsavina, E. Linul, Scaling of compression strength in disordered solids: metallic foams, Frattura ed Integrita Strutturale 10(36) (2016) 55-62.

    Article  Google Scholar 

  47. H. Elzanaty, Effect of different Si content on the mechanical properties in Al-based alloy, International Journal of Research in Engineering & Technology (IMPACT: IJRET) 2(7) (2014) 49-54.

    Google Scholar 

  48. S. Yu, J. Liu, Y. Luo, Y. Liu, Compressive behavior and damping property of ZA22/SiCp composite foams, Materials Science and Engineering: A 457(1-2) (2007) 325-328.

    Article  Google Scholar 

  49. S. Sahu, M.Z. Ansari, A Study on Manufacturing Processes and Compressive Properties of Zinc-Aluminium Metal Foams, American Journal of Materials Science 5(3C) (2015) 38-42.

    Google Scholar 

  50. C.J. Yu, J. Banhart, Mechanical properties of metallic foams, Proceedings of Fraunhofer USA Metal Foam Symposium, Stanton, Delaware, 1997, p. 7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hossein Elahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahani, M., Hossein Elahi, S. & Rezaei Ashtiani, H.R. Effect of Silicon Content on Mechanical Properties and Progressive Collapse Behavior of Closed-cell Aluminum Foams. Trans Indian Inst Met 74, 3145–3154 (2021). https://doi.org/10.1007/s12666-021-02390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02390-8

Keywords

Navigation