Skip to main content
Log in

Heat Treatment of Closed-Cell A356 + 4 wt.%Cu + 2 wt.%Ca Foam and Its Effect on the Foam Mechanical Behavior

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this investigation, aluminum-silicon alloy foam is developed by adding certain amounts of copper and calcium elements in A356 alloy. Addition of 4 wt.%Cu + 2 wt.%Ca to the melt changed bubbles morphology from ellipsoid to spherical by decreasing Reynolds number and increasing Bond number. Compression behavior and energy absorption of the foams are assessed before and after aging. Solid solution treatment and aging lead to the best mechanical properties with 170% enhancement in yield strength and 185% improvement in energy absorption capacity as compared to non-heat-treated foams. The metallographic observations showed that bubbles geometry and structure in the A356 + 4wt.% Cu + 2 wt.%Ca foam are more homogeneous than the A356 foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.F. Ashby, T. Evans, N. Fleck, J.W. Hutchinson, H.N.G. Wadley, and L.J. Gibson, Metal Foams: A Design Guide: A Design Guide, Elsevier Science, Amsterdam, 2000

    Google Scholar 

  2. J.F. Ramírez, M. Cardona, J.A. Velez, I. Mariaka, J.A. Isaza, E. Mendoza, S. Betancourt, and P. Fernández-Morales, Numerical Modeling and Simulation of Uniaxial Compression of Aluminum Foams Using FEM and 3D-CT Images, Proc. Mater. Sci., 2014, 4, p 227–231

    Article  Google Scholar 

  3. N. Movahedi, S.M.H. Mirbagheri, and S.R. Hoseini, Effect of foaming Temperature on the Mechanical Properties of produced Closed-Cell A356 Aluminum Foams with Melting Method, Met. Mater. Int., 2014, 20, p 6

    Article  Google Scholar 

  4. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, ALPORAS Aluminum Foam: Production Process, Prop. Appl. Adv. Eng. Mater., 2000, 2, p 179–183

    Article  Google Scholar 

  5. B. MatijasevicLux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, Modification of Titanium Hydride for Improved Aluminium Foam Manufacture, Acta Mater., 2006, 54, p 1887–1900

    Article  Google Scholar 

  6. S.M.H. Mirbagheri and J. Khajehali, The Effect of Fe Additive on Plastic Deformation for Crush-Boxes with Closed-Cell Metal Foams, Part II: Al-Composite Foam-Filled Brass Tubes Compression Response, Iran. J. Mater. Form., 2014, 1, p 9

    Google Scholar 

  7. R. Bhushan, S. Kumar, and S. Das, Fabrication and Characterization of 7075 Al Alloy Reinforced with SiC Particulates, Int. J. Adv. Manuf. Technol., 2013, 65, p 611–624

    Article  Google Scholar 

  8. F. Wenyuan, M. Youguang, J. Shaokun, Y. Ke, and L. Huaizhi, An Experimental Investigation for Bubble Rising in Non-Newtonian Fluids and Empirical Correlation of Drag Coefficient, J. Fluids Eng., 2010, 13, p 7

    Google Scholar 

  9. A. Bhakta and E. Ruckenstein, Decay of Standing Foams: Drainage, Coalescence and Collapse, Adv. Colloid Interface Sci., 1997, 70, p 1–124

    Article  Google Scholar 

  10. N.E. Bekheet, R.M. Gadelrab, M.F. Salah, and A.N.A. El-Azim, The Effects of Aging on the Hardness and Fatigue Behavior of 2024 Al Alloy/SiC Composites, Mater. Des., 2002, 23, p 153–159

    Article  Google Scholar 

  11. A. Rabiei and L.J. Vendra, A Comparison of Composite Metal Foam’s Properties and Other Comparable Metal Foams, Mater. Lett., 2009, 63, p 533–536

    Article  Google Scholar 

  12. Y. Feng, T. Ning, Z. Zhengang, H. Shisheng, and Y. Pan, Effect of Aging Treatment on the Quasi-Static and Dynamic Compressive Properties of Aluminum Alloy Foams, Mater. Lett., 2003, 57, p 5

    Google Scholar 

  13. D. Mandal and S. Viswanathan, Effect of Heat Treatment on Microstructure and Interface of SiC Particle Reinforced 2124 Al Matrix Composite, Mater. Charact., 2013, 85, p 73–81

    Article  Google Scholar 

  14. S. Hossein Elahi, R. Arabi Jeshvaghani, and H.R. Shahverdi, Influence of calcium addition and stirring on the cellular structure and foaming behavior of molten zinc, Appl. Phys. A, 2015, 119(2), p 533–538. doi:10.1007/s00339-015-8985-7

    Article  Google Scholar 

  15. D. Wang and R.A. Overfelt, Oscillating Cup Viscosity Measurements of Aluminum Alloys: A201, A319 and A356, Int. J. Thermophys., 2002, 23, p 10

    Article  Google Scholar 

  16. M. Saadatfar, M. Mukherjee, M. Madadi, G.E. Schröder-Turk, F. Garcia-Moreno, F.M. Schaller, S. Hutzler, A.P. Sheppard, J. Banhart, and U. Ramamurty, Structure and Deformation Correlation of Closed-Cell Aluminium Foam Subject to Uniaxial Compression, Acta Mater., 2012, 60, p 3604–3615

    Article  Google Scholar 

  17. Y. Mu, G. Yao, L. Liang, H. Luo, and G. Zu, Deformation Mechanisms of Closed-Cell Aluminum Foam in Compression, Scr. Mater., 2010, 63, p 629–632

    Article  Google Scholar 

  18. F. Campana and D. Pilone, Effect of Heat Treatments on the Mechanical Behaviour of Aluminium Alloy Foams, Scr. Mater., 2009, 60, p 679–682

    Article  Google Scholar 

  19. D. Lehmhus and J. Banhart, Properties of Heat-Treated Aluminium Foams, Mater. Sci. Eng. A, 2003, A349, p 12

    Google Scholar 

  20. S.A. Sajjadi, H.R. Ezatpour, and M. Torabi Parizi, Comparison of Microstructure and Mechanical Properties of A356 Aluminum Alloy/Al2O3 Composites Fabricated by Stir and Compo-Casting Processes, Mater. Des., 2012, 34, p 106–111

    Article  Google Scholar 

  21. C. Francesca and P. Daniela, Effect of Heat Treatments on Mechanical Behavior of Aluminum Alloy Foams, Scr. Mater., 2009, 60, p 3

    Article  Google Scholar 

  22. N. Ponweiser and K.W. Richter, New Investigation of Phase Equilibria in the System Al-Cu-Si, J. Alloys Compd., 2012, 512, p 252–263

    Article  Google Scholar 

  23. V. Raghavan, Al-Cu-Si (Aluminum-Copper-Silicon), J. Phase Eqilib. Diffus., 2007, 28, p 180–182

    Article  Google Scholar 

  24. D.A. Porter, and K.E. Easterling, Phase Transformations in Metals and Alloys, 3rd Edn (Revised Reprint), 1992

  25. S. Pal, R. Mitra, and V.V. Bhanuprasad, Aging Behaviour of Al-Cu-Mg Alloy-SiC Composites, Mater. Sci. Eng., A, 2008, 480, p 496–505

    Article  Google Scholar 

  26. H. Kobatake, J. Schmitz, and J. Brillo, Density and Viscosity of Ternary Al-Cu-Si Liquid Alloys, J. Mater. Sci., 2014, 49, p 8

    Article  Google Scholar 

  27. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of In-Situ TiB2/A356 Composites, Mater. Sci. Eng., A, 2014, 590, p 246–254

    Article  Google Scholar 

  28. S.G. Shabestari and H. Moemeni, Effect of Copper and Solidification Conditions on the Microstructure and Mechanical Properties of Al-Si-Mg Alloys, J. Mater. Process. Technol., 2004, 153-154, p 193–198

    Article  Google Scholar 

  29. D.R. Poirier and E. McBride, Thermal Conductivities of Hypoeutectic Al-Cu Alloys During Solidification and Cooling, Mater. Sci. Eng., A, 1997, 224, p 48–52

    Article  Google Scholar 

  30. Y. Gan, Comment on “Delayed Fracture in Porous Media”, Phys. Rev. Lett., 2006, 96, p 259601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. H. Mirbagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirbagheri, S.M.H., Vali, H. & Soltani, H. Heat Treatment of Closed-Cell A356 + 4 wt.%Cu + 2 wt.%Ca Foam and Its Effect on the Foam Mechanical Behavior. J. of Materi Eng and Perform 26, 14–27 (2017). https://doi.org/10.1007/s11665-016-2425-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2425-5

Keywords

Navigation