Skip to main content
Log in

High Temperature Tensile Deformation Response of γ + α2 Titanium Aluminide Processed through Ingot Metallurgy Route

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

High temperature service capability and deformation behavior of γ + α2 TiAl alloy made through ingot melting route has been studied under tensile load at temperature (T = 750–900 °C) and strain rate (\(\dot{\varepsilon }\) = 10−1–10−3 s−1). Reduction in strength is not seen till 800 °C at all the three strain rates, indicating safe use of alloy up to this temperature. Further, it has been observed that % elongation to failure (ef) increases with increase in T or decreasing \(\dot{\varepsilon }\). Significant increase in ef is observed with decrease in \(\dot{\varepsilon }\) from 10−2 to 10−3 s−1 at test temperature of 850 °C or above. At 900 °C and 10−3 s−1, ef is observed to be 47%. Microstructure consisting of γ and α2 phases with lamellar morphology and β phase are distributed uniformly along grain boundaries. Refinement of lamellae and dynamic recrystallization (DRX) assisted by twinning is found to be the primary reason for flow softening, which lead to improvement in ef of alloy at T ≥ 850 °C. It is observed that temperature plays a major role in initiation of DRX as observed with increasing T whereas \(\dot{\varepsilon }\) plays major role in twinning as observed with decreasing \(\dot{\varepsilon }\) even at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomas M, and Bacos M P, J Aerosp Lab 3 (2011) 1.

    CAS  Google Scholar 

  2. Huang S C, and Hall E L, Metall Trans A 22 (1991) 427.

    Article  Google Scholar 

  3. Bartels C, Zhang K T, and Mecking H, in Gamma Titanium Aluminides, (eds) Kim et al. Y-W (1995), p 655

  4. Liu C T, Maziasz P J, Clemens D R, Schneibel J, Sikka V K, Nieh T G, Wright J, and Walker L R, Gamma Titanium Aluminides, (eds) Ki Y-W et al. (1995), p 679.

  5. Chen G L, Liu Z C, Lin J P, and Zhang, W J, Structural Intermetallics 2001 (eds) Hemker K J et al. Warrendale, PA, TMS (2001), p 475.

  6. Appel F, Paul J D H, Oehring M, and Buque C, Gamma Titanium Aluminides 2003 (eds) Kim Y-W et al. Warrendale, PA, TMS (2003), p 139.

  7. Voice W E, Henderson M, Shelton N E F J, and Wu X, Intermetallics 13 (2005) 959.

    Article  CAS  Google Scholar 

  8. Munoz-Morris M A, Gil I, and Morris D G, Intermetallics 13 (2005) 92.

    Google Scholar 

  9. Chladil H F, Clemens H, Leitner H, Bartels A, Gerling R, Schimansky F P, and Kremmer S, Intermetallics 14 (2006) 1194.

    Article  CAS  Google Scholar 

  10. Lapin J, Gabalcová Z, Pelachová T, and Bajana O, Mater. Sci. Forum 638–642 (2010) 1368.

    Article  CAS  Google Scholar 

  11. Clemens H, and Mayer S, Adv Eng Mater 15 (2013) 191.

    Article  CAS  Google Scholar 

  12. Tetsui T, Shindo K, Kobayashi S, and Takeyama M, Scr Mater 47 (2002) 399.

    Article  CAS  Google Scholar 

  13. Imayev RM, Imayev VM, Oehring M, and Appel F, Intermetallics 15 (2007) 451.

    Article  CAS  Google Scholar 

  14. Chen G, Zhang W, Liu Z, Li S, and Kim Y W, Gamma Titanium Aluminides (eds) Kim Y M, Wagner R, and Yamaguchi M, TMS (1999), p. 371.

  15. Schutze M, J Nat Mater 15 (2016) 823.

    Article  CAS  Google Scholar 

  16. Clemens H, and Kestler H, J Adv Eng Mater 2 (2000) 551.

    Article  CAS  Google Scholar 

  17. Pollock T M, J Nat Mater 15 (2016) 809.

    Article  CAS  Google Scholar 

  18. Gupta R K, Anil Kumar V, Ramesh Babu R, and Gourav Rao A, Mater Sci Eng A 703 (2017) 124.

    Article  CAS  Google Scholar 

  19. Chen R, Dong S, Guo J, Ding H, Su Y, and Fu H J Mater Des 89 (2016) 492.

    Article  CAS  Google Scholar 

  20. Ding J, Zhang M, Liang Y, Ren Y, Dong C and Lin J, Acta Mater (2018). https://doi.org/10.1016/j.actamat.2018.09.007

    Article  Google Scholar 

  21. Gupta R K, Pant B, Kumar V, Agarwala V, and Sinha P P Mater Sci Eng A 559 (2013) 49.

    Article  CAS  Google Scholar 

  22. Gupta R K, Narayana Murty S V S, Pant B, Agarwala V, and Sinha P P Mater Sci Eng A 551 (2012) 169.

    Article  CAS  Google Scholar 

  23. Singh B K, Anil Kumar V, Gupta R K, and Kanjarla A , Mater Sci Eng A 754 (2019) 708.https://doi.org/10.1016/j.msea.2019.03.111.

    Article  CAS  Google Scholar 

  24. Kim S W, Hong J K, Na Y S, Yeom J T, and Kim S E, Mater Des 54 (2014) 814.

    Article  CAS  Google Scholar 

  25. Klein T, Usategui L, Rashkova B, Nó M L, San Juan J, Clemens H, and Mayer S, Acta Mater. https://doi.org/10.1016/j.actamat.2017.02.050

    Article  Google Scholar 

  26. Li M, Xiao S, Chen Y, Xu L, and Tian J, Mater Sci Eng A. https://doi.org/10.1016/j.msea.2018.07.019.

    Article  Google Scholar 

  27. Li M, Xiao S, Chen Y, Xu L, and Tian J, J Alloys Compd 775 (2019) 441.

    Article  CAS  Google Scholar 

  28. Zhao Y B, Zhang S Z, Zhang C J, Lin P, Hou Z P, and Chen Y Y, Mater Sci Eng A 678 (2016) 116.

    Article  CAS  Google Scholar 

  29. Shen Z Z, Lin J P, Liang Y F, Zhang L Q, Shang S L, and Liu Z K, Intermetallics 67 (2015) 19.

    Article  CAS  Google Scholar 

  30. Xu X J, Lin J P, Wang Y L, Gao J F, Lin Z, and Chen G L, J Alloys Compd 414 (2006) 175

    Article  CAS  Google Scholar 

  31. Lin J P, Xu X J, Wang Y L, He S F, Zhang Y, Song X P, and Chen G L, Intermetallics 15 (2007) 668.

    Article  CAS  Google Scholar 

  32. Bystrzanowski S, Bartels A, Stark A, Gerling R, Schimansky F P, and Clemens H, Intermetallics 18 (2010) 1046.

    Article  CAS  Google Scholar 

  33. Xu X J, Lin J P, Wang Y L, Gao J F, Lin Z, and Chen G L, J Alloy Compd 414 (2006) 131.

    Article  CAS  Google Scholar 

  34. Li J, Liu Y, Liu B, Wang Y, Liang X, and He Y, Mater Char 95 (2014) 148.

    Article  CAS  Google Scholar 

  35. Imayev V, Imayev R, Khismatullin T, Güther V, Beck W, and Fecht H J, Scr Mater 57 (2007) 193.

    Article  CAS  Google Scholar 

  36. Imayev V M, Imayev R M, Kuznetsov A V, Shagiev M R, and Salishchev G A, Mater Sci Eng A 348 (2003) 15.

    Article  CAS  Google Scholar 

  37. Sun F, and Lin D, Scr Mater 44 (2001) 665.

    Article  CAS  Google Scholar 

  38. Niu H Z, Kong F T, Chen Y Y, and Zhang C J, J Alloy Compd 543 (2012) 19.

    Article  CAS  Google Scholar 

  39. Imayev R M, Salishchev G A, Senkov O N, Imayev V M, Shagiev M R, Gabdullin N K, Kuznetsov A V, and Froes F HMater Sci Eng. A 300 (2001) 263.

    Article  Google Scholar 

  40. Huang B, Deng Z, Liu Y, Qu X, and Lin Y H, Intermetallics 8 (2000) 559.

    Article  CAS  Google Scholar 

  41. Lin D, and Sun F , Intermetallics 12 (2004) 875.

    Article  CAS  Google Scholar 

  42. Sun J, He Y H and Wu J S, Mater Sci Eng A 329–331 (2002) 885.

    Article  Google Scholar 

  43. Pond R C, Shang P, Cheng T T, and Aindow M, Acta Mater 48 (2000) 1047.

    Article  CAS  Google Scholar 

  44. Zghal S, Thomas M, Naka S, Finel A, and Couret A , Acta Mater 53 (2005) 2653.

    Article  CAS  Google Scholar 

  45. Appel F, and Wagner R, Mater Sci Eng R 22 (1998) 187.

    Article  Google Scholar 

  46. Liu C T, Schneibel J H, Maziasz P J, Wright J L, and Easton D S, Intermetallics 4 (1996) 429.

    Article  CAS  Google Scholar 

  47. Zhang W J, Liu Z C, Chen G L, and Kim Y-W, Mater Sci Eng A 271 (1999) 416.

    Article  Google Scholar 

  48. Niu H Z, Kong F T, Chen Y Y, and Yang F, J Alloys Compd 509 (2011) 10179.

    Article  CAS  Google Scholar 

  49. Nieh T G, Hsiung L M, and Wadsworth J, Intermetallics 7 (1999) 163.

    Article  CAS  Google Scholar 

  50. Liu Z C, Lin J P, Li S J, and Chen G L, Intermetallics 10 (2002) 653.

    Article  CAS  Google Scholar 

  51. Woodward C, an Mac Laren J M, Philos Mag A 74 (1996) 337.

    Article  CAS  Google Scholar 

  52. Zhang S Z, Zhang C J, Du Z X, Hou Z P, Lin P, Kong F T, and Chen Y Y, Mater Des 90 (2016) 225.

    Article  CAS  Google Scholar 

  53. Kim Y W, and Dimiduk D M, Structural Intermetallics (I) TMS, PA (1997), p. 531.

  54. Appel F, and Beaven P A , Acta Metall Mater 41 (1993) 1721.

    Article  CAS  Google Scholar 

  55. Kanani M, Hartmaier A, and Janisch R, J Acta Mater 106 (2016) 208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Group Director (MMG), General Manager (MMA) and Deputy Director (MME) for technical suggestions and Director, VSSC for granting permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.K., Kumar, V.A. & Venkitakrishnan, P.V. High Temperature Tensile Deformation Response of γ + α2 Titanium Aluminide Processed through Ingot Metallurgy Route. Trans Indian Inst Met 74, 2081–2092 (2021). https://doi.org/10.1007/s12666-021-02273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02273-y

Keywords

Navigation