Skip to main content
Log in

Effect of Preheating Temperature on the Microstructure and Corrosion Resistance of TiC–Ni Coating by CS/PHIP

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

TiC–Ni composite coatings with different preheating temperatures were fabricated in situ on the H13 steel substrate by combustion synthesis combined with pseudo-heat isostatic press. The effects of preheating temperature on microstructure, surface porosity, mechanical properties and corrosion behaviour were investigated. The coatings were characterized by XRD, SEM–EDS and microhardness tester. The in situ composite coatings prepared at different preheating temperatures consisted of a network of Ni binder phase (white) and a spheroidal TiC phase (dark) embedded therein. The grain size of TiC, the proportion of the TiC-reinforced phase, surface hardness and interfacial bonding strength increased with increasing preheating temperature. The density and dimension of the AlNi3 phase after the immersion test decreased with an increase in preheating temperature. The corrosion mechanism of the coating was that the Ni binder phase was corroded by aluminium and the TiC phase got oxidized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang X, He X, Han J, Qu W, and Kvalin V L, Mater Lett 56 (2002) 183.

    Article  Google Scholar 

  2. Xiao G, Fan Q, Gu M, Wang Z, and Jin Z, Mat Sci Eng A Struct 382 (2004) 132.

    Article  Google Scholar 

  3. Han J C, Zhang X H, and Wood J V, Mat Sci Eng A Struct 280 (2000) 328.

    Article  Google Scholar 

  4. Fu Z, Mondal K, and Koc R S, Ceram Int 42 (2016) 9995.

    Article  Google Scholar 

  5. Yang Y F, Wang H Y, Wang J G, and Jiang Q C, J Am Ceram Soc 91 (2008) 3813.

    Article  Google Scholar 

  6. Dunmead S D, Readey D W, Semler C E, and Hol J B, J Am Ceram Soc 72 (1989) 2318.

    Article  Google Scholar 

  7. Holt J B, J Mater Sci 21 (1986) 251.

    Article  Google Scholar 

  8. Choi Y, and Rhee S W, J Mater Sci 30 (1995) 4637.

    Article  Google Scholar 

  9. Manukyan K V, Lin Y C, Rouvimov S, McGinn P J, and Mukasyan A S, J Appl Phys 113 (2013) 024302.

    Article  Google Scholar 

  10. Yang Y F, Wang H Y, Zhang J, Zhao R Y, Liang Y H, and Jiang Q C, J Am Ceram Soc 91 (2008) 2736.

    Article  Google Scholar 

  11. Munir Z A, and Anselmi-Tamburini U, Mat Sci R 3 (1989) 277.

    Article  Google Scholar 

  12. Yamada O, Miyamoto Y, and Koizumi M, J Am Ceram Soc 70 (1987) C-206.

  13. Gopagoni S, Hwang J Y, Singh A R P, Mensah B A, Bunce N, Tiley J, Scharf T W, and Banerjee R, J Alloy Compd 509 (2011) 1255.

    Article  Google Scholar 

  14. Azadmehr A, and Taheri-Nassaj E, J Non Cryst Solids 354 (2008) 3225.

    Article  Google Scholar 

  15. Choi Y, and Rhee S W, J Mater Res 8 (1993) 3202.

    Article  Google Scholar 

  16. Choi Y, and Rhee S W, J Mater Sci 28 (1993) 6669.

    Article  Google Scholar 

  17. Saidi A, Chrysanthou A, Wood J V, and Kellie J L F, J Mater Sci 29 (1994) 4993.

    Article  Google Scholar 

  18. Zhang W, Zhang X, Wang J, and Hong C, Mat Sci Eng A Struct 381 (2004) 92.

    Article  Google Scholar 

  19. LaSalvia J C, Kim D K, and Meyers MA, Mat Sci Eng A Struct 206 (1996) 71.

    Article  Google Scholar 

  20. Zarrinfar N, Shipway P H, Kennedy A R, and Saidi A, Scr Mater 46 (2002) 121.

    Article  Google Scholar 

  21. Yang Y F, Wang H Y, Wang J G, and Jiang Q C, J Alloy Compd 509 (2011) 7060.

    Article  Google Scholar 

  22. Durlu N, J Eur Ceram Soc 19 (1999) 2415.

    Article  Google Scholar 

  23. Lemboub S, Boudebane S, Gotor F J, Haouli S, Mezrag S, Bouhedja S, Hesser G, Chadli H, and Chouchane T, Int J Refract Metals Hard Mater 70 (2018) 84.

    Article  Google Scholar 

  24. Stolin A M, and Bazhin P M, Int J Self Propag High Temp Synth 23 (2014) 65.

    Article  Google Scholar 

  25. Boromei I, Casagrande A, Tarterini F, Poli G, Veronesi P, and Rosa R, Surf Coat Technol 204 (2010) 1793.

    Article  Google Scholar 

  26. Liu Z D, Tian J, Li B, and Zhao L P, Mat Sci Eng A Struct 527 (2010) 3898.

    Article  Google Scholar 

  27. Odawara O, and Ikeuchi J, Trans Jpn Inst Met 27 (1986) 702.

    Article  Google Scholar 

  28. Odawara O, Trans Jpn Inst Metals 26 (1985) 578.

    Article  Google Scholar 

  29. Odawara O, J Am Ceram Soc 73 (1990) 629.

    Article  Google Scholar 

  30. Yang Y W, Fu Z Y, and Yuan R Z, J Wuhan Univ Technol 18 (2003) 14.

    Article  Google Scholar 

  31. He S, Fan X A, Chang Q, and Xiao L, Metall Mater Trans B 48 (2017) 1748.

    Article  Google Scholar 

  32. Boutefnouchet H, Curfs C, Triki A, Boutefnouchet A, and Vrel D, Powder Technol 217 (2012) 443.

    Article  Google Scholar 

  33. Yang Y F, Wang H Y, Zhao R Y, Liang Y H, Zhan L, and Jiang Q C, J Alloy Compd 460 (2008) 276.

    Article  Google Scholar 

  34. Yang Y F, Wang H Y, Liang Y H, Zhao R Y, and Jiang Q C, Mat Sci Eng A Struct 474 (2008) 355.

    Article  Google Scholar 

  35. Ye L L, Huang J Y, Liu Z G, Quan M X, and Hu Z Q, J Mater Res 11 (1996) 2092.

    Article  Google Scholar 

  36. Choi Y, Lee J K, and Mullins M E, J Mater Sci 32 (1997) 1717.

    Article  Google Scholar 

  37. Huang L, Wang H Y, Qiu F, and Jiang Q C, Mat Sci Eng A Struct 422 (2006) 309.

    Article  Google Scholar 

  38. Li Y X, Bai P K, Wang Y M, Hu J D, and Guo Z X, Int J Refract Metals Hard Mater 27 (2009) 552.

    Article  Google Scholar 

  39. Zhu G, Wang W, Wang R, Zhao C, Pan W, Huang H, Du D, Wang D, Shu D, Dong A, Sun B, Jiang S, and Pu Y, Materials 10 (2017) 1007.

    Article  Google Scholar 

  40. Sierra C, and Vázquez A J, Sol Energ Mat Sol C 86 (2005) 33.

    Article  Google Scholar 

  41. Riley D P, Intermetallics 14 (2006) 770.

    Article  Google Scholar 

  42. Wang H, Zhang S, Zhu J, Huang J, Liu H, and Zhang H, J Therm Spray Tech 18 (2009) 103.

    Article  Google Scholar 

  43. Yang S, Zhong M, and Liu W, Mat Sci Eng A Struct 343 (2003) 57.

    Article  Google Scholar 

  44. Mogonye J E, Srivastava A, Gopagoni S, Banerjee R, and Scharf T W, Tribol Lett 64 (2016) 37.

    Article  Google Scholar 

  45. Humenik M, and Parikh N M, J Am Ceram Soc 39 (1956) 60.

    Article  Google Scholar 

  46. Ye D L, and Hu J H, Practical inorganic thermodynamics manual, Metallurgical Industry Press, Beijing (2002).

    Google Scholar 

  47. Merzhanov A G, an`ya I P, Dokl Akad Nauk SSSR 204 (1972) 366.

    Google Scholar 

  48. Wei M X, Wang S Q, Wang F, and Cui X H, Mater Des 30 (2009) 3041.

    Article  Google Scholar 

  49. Boutefnouchet H, and Vrel D, Int J Self Propag High Temp Synth, 25 (2016) 67.

    Article  Google Scholar 

  50. Wong J, Larson E M, Holt J B, Waide P A, Rupp B, and Frahm R, Science 249 (1990) 1406.

    Article  Google Scholar 

  51. Munir Z A. J Mater Synth Process 1 (1993) 387.

    Google Scholar 

  52. Morsi K, J Mater Sci 47 (2012) 68.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51375353 and No. 51475346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggang Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Shi, J., Wei, J. et al. Effect of Preheating Temperature on the Microstructure and Corrosion Resistance of TiC–Ni Coating by CS/PHIP. Trans Indian Inst Met 72, 1869–1879 (2019). https://doi.org/10.1007/s12666-019-01664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01664-6

Keywords

Navigation