Skip to main content

Advertisement

Log in

Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Understanding the relationship between surface water and groundwater is important for the integrated management of water resources in arid regions. In the present study, the connectivity of river water and shallow groundwater along the Shidi River, China is estimated using a connectivity index, as well as analyses of hydrochemistry and isotopic signature. The three approaches for hydraulic connectivity assessment were compared and discussed. An end member mixing analysis was performed to estimate the contribution ratios of local precipitation, river leakage and groundwater lateral inflow to the total groundwater recharge along the river. The results show that medium connectivity is identified in all reaches of the river (upstream, midstream and downstream). Water table depth and river channel sediments are the major factors responsible for the spatial variation of the hydraulic connectivity. The CI approach can be adopted to generate preliminary assessment results of hydraulic connectivity, while the physiochemical and isotopic approaches should be used as a tool for results validation and verification. Groundwater lateral inflow is the most important recharge source of groundwater along the river, while river leakage only accounts for 18.4–27.0 % of the total recharge. This study is meaningful in integrated water resources management in arid regions and the methods used in this study can be adopted by other scholars in similar studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anibas C, Buis K, Verhoeven R, Meire P, Batelaan O (2011) A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. J Hydrol 397:93–104. doi:10.1016/j.jhydrol.2010.11.036

    Article  Google Scholar 

  • Anibas C, Verbeiren B, Buis K, Chormański J, De Doncker L, Okruszko T, Meire P, Batelaan O (2012) A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland. Hydrol Earth Syst Sci 16:2329–2346. doi:10.5194/hess-16-2329-2012

    Article  Google Scholar 

  • Banoeng-Yakubo B, Yidana SM, Nti E (2009) Hydrochemical analysis of groundwater using multivariate statistical methods—the Volta Region. Ghana. KSCE J Civ Eng 13(1):55–63. doi:10.1007/s12205-009-0055-2

    Article  Google Scholar 

  • Becker MW, Georgian T, Ambrose H, Siniscalchi J, Fredrick K (2004) Estimating flow and flux of ground water discharge using water temperature and velocity. J Hydrol 296:221–233. doi:10.1016/j.jhydrol.2004.03.025

    Article  Google Scholar 

  • Chen X (2001) Migration of induced-infiltrated stream water into nearby aquifers due to seasonal ground water withdrawal. Ground Water 39(5):721–728. doi:10.1111/j.1745-6584.2001.tb02362.x

    Article  Google Scholar 

  • Chen X (2007) Hydrologic connections of a stream–aquifer-vegetation zone in south-central Platte River valley. Nebraska. J Hydrol 333(2–4):554–568. doi:10.1016/j.jhydrol.2006.09.020

    Article  Google Scholar 

  • Chen X, Chen X (2003) Stream water infiltration, bank storage, and storage zone changes due to stream-stage fluctuations. J Hydrol 280(1–4):246–264. doi:10.1016/S0022-1694(03)00232-4

    Article  Google Scholar 

  • Chen J, Qian H, Li P (2013) Mixing precipitation of CaCO3 in natural waters. Water 5:1712–1722. doi:10.3390/w5041712

    Article  Google Scholar 

  • Cho J, Mostaghimi S, Kang MS (2010) Development and application of a modeling approach for surface water and groundwater interaction. Agr Water Manage 97:123–130. doi:10.1016/j.agwat.2009.08.018

    Article  Google Scholar 

  • Christophersen N, Neal C, Hooper RP, Vogt RD, Andersen S (1990) Modelling stream water chemistry as a mixture of soil water end-members—a step towards second-generation acidification models. J Hydrol 116(1):307–320. doi:10.1016/0022-1694(90)90130-P

    Article  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313. doi:10.1016/j.jhydrol.2008.02.015

    Article  Google Scholar 

  • Constantz J, Stonestrom D (2003) Heat as a tracer of water movement near streams. In: Stonestrom D, Constantz J (eds) Heat as a tool for studying the movement of ground water near streams. U.S. Geological Survey, Reston Circular 1260

  • Cook PG (2013) Estimating groundwater discharge to rivers from river chemistry surveys. Hydrol Process 27(25):3694–3707. doi:10.1002/hyp.9493

    Article  Google Scholar 

  • Craig H (1961) Isotope variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Dahl M, Nilsson B, Langhoff JH, Refsgaard JC (2007) Review of classification systems and new multi-scale typology of groundwater–surface water interaction. J Hydrol 344:1–16. doi:10.1016/j.jhydrol.2007.06.027

    Article  Google Scholar 

  • Dor N, Syafalni S, Abustan I, Rahman MTA, Nazri MAA, Mostafa R, Mejus L (2011) Verification of surface-groundwater connectivity in an irrigation canal using geophysical, water balance and stable isotope approaches. Water Resour Manag 25(11):2837–2853. doi:10.1007/s11269-011-9841-y

    Article  Google Scholar 

  • Dujardin J, Batelaan O, Canters F, Boel S, Anibas C, Bronders J (2011) Improving surface–subsurface water budgeting using high resolution satellite imagery applied on a brownfield. Sci Total Environ 409:800–809. doi:10.1016/j.scitotenv.2010.10.055

    Article  Google Scholar 

  • Dujardin J, Anibas C, Bronders J, Jamin P, Hamonts K, Dejonghe W, Brouyère S, Batelaan O (2014) Combining flux estimation techniques to improve characterization of groundwater–surface-water interaction in the Zenne River. Hydrogeol J, Belgium. doi:10.1007/s10040-014-1159-4

    Google Scholar 

  • Eslamian S, Nekoueineghad B (2009) A review on interaction of groundwater and surface water. Int J Water 5(2):89–99

    Article  Google Scholar 

  • Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33:1291–1295. doi:10.1016/j.advwatres.2010.09.011

    Article  Google Scholar 

  • Hooper RP, Christophersen N, Peters NE (1990) Modelling stream water chemistry as a mixture of soil water end-members—an application to the Panola Mountain catchment, Georgia. USA. J Hydrol 116(1):321–343. doi:10.1016/0022-1694(90)90131-G

    Article  Google Scholar 

  • Hu L-T, Wang Z-J, Tian W, Zhao J-S (2009) Coupled surface water–groundwater model and its application in the Arid Shiyang River basin, China. Hydrol Process 23:2033–2044. doi:10.1002/hyp.7333

    Article  Google Scholar 

  • Jolly ID, McEwan KL, Holland KL (2008) A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 1:43–58. doi:10.1002/eco.6

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater-surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887. doi:10.5194/hess-10-873-2006

    Article  Google Scholar 

  • Kalbus E, Schmidt C, Bayer-Raich M, Leschik S, Reinstorf F, Balcke GU, Schirmer M (2007) New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures. Environ Pollut 148:808–816. doi:10.1016/j.envpol.2007.01.042

    Article  Google Scholar 

  • Kalbus E, Schmidt C, Molson JW, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sci 13:69–77. doi:10.5194/hess-13-69-2009

    Article  Google Scholar 

  • Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Röstel G, Teutsch G, Borchardt D, Krebs P (2012) Integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65:1363–1366. doi:10.1007/s12665-011-1330-3

    Article  Google Scholar 

  • Keery J, Binley A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336:1–16. doi:10.1016/j.jhydrol.2006.12.003

    Article  Google Scholar 

  • King AC, Raiber M, Cox ME (2014) Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: cressbrook Creek, southeast Queensland, Australia. Hydrogeol J 22:481–500. doi:10.1007/s10040-013-1057-1

    Article  Google Scholar 

  • Lambs L (2004) Interactions between groundwater and surface water at river banks and the confluence of rivers. J Hydrol 288:312–326. doi:10.1016/j.jhydrol.2003.10.013

    Article  Google Scholar 

  • Lamontagne S, Leaney FW, Herczeg AL (2005) Groundwater–surface water interactions in a large semi-arid floodplain: implications for salinity management. Hydrol Process 19:3063–3080. doi:10.1002/hyp.5832

    Article  Google Scholar 

  • Langhoff JH, Rasmussen KR, Christensen S (2006) Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J Hydrol 320:342–358. doi:10.1016/j.jhydrol.2005.07.040

    Article  Google Scholar 

  • Li P (2014) Phoebe Koundouri. (2011). Water resources allocation: policy and socioeconomic issues in Cyprus, Springer, Global issues in water policy series, Vol. 1. Hardcover ISBN 978-90-481-9824-5. Water Resour Manag 28:2381–2385. doi:10.1007/s11269-014-0609-z

    Article  Google Scholar 

  • Li P, Qian H, Wu J, Zhang Y, Zhang H (2013) Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water Environ 32:195–206. doi:10.1007/s10230-013-0234-8

    Article  Google Scholar 

  • Li P, Qian H, Wu J (2014a) Accelerate research on land creation. Nature 510(7503):29–31. doi:10.1038/510029a

    Article  Google Scholar 

  • Li P, Qian H, Wu J, Chen J, Zhang Y, Zhang H (2014b) Occurrence and hydrogeochemistry of fluoride in alluvial aquifer of Weihe River, China. Environ Earth Sci 71:3133–3145. doi:10.1007/s12665-013-2691-6

    Article  Google Scholar 

  • Li P, Qian H, Wu J, Zhang Y, Zhang H (2014c) Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environ Earth Sci. doi:10.1007/s12665-014-3628-4

    Google Scholar 

  • Liu Y, Yamanaka T (2012) Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. J Hydrol 464–465:116–126. doi:10.1016/j.jhydrol.2012.06.053

    Article  Google Scholar 

  • Liu F, Williams MW, Caine N (2004) Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resour Res 40(9):W09401. doi:10.1029/2004WR003076

    Google Scholar 

  • Newman BD, Vivoni ER, Groffman AR (2006) Surface water–groundwater interactions in semiarid drainages of the American southwest. Hydrol Process 20:3371–3394. doi:10.1002/hyp.6336

    Article  Google Scholar 

  • Oyarzún R, Barrera F, Salazar P, Maturana H, Oyarzún J, Aguirre E, Alvarez P, Jourde H, Kretschmer N (2014) Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeol J 22:1857–1873. doi:10.1007/s10040-014-1170-9

    Article  Google Scholar 

  • Qian H, Li P (2011) Mixing corrosion of CaCO3 in natural waters. E-J Chem 8(3):1124–1131. doi:10.1155/2011/891053

    Article  Google Scholar 

  • Qian H, Li P (2012) Proportion dependent mixing effects of CaCO3 in natural waters. Asian J Chem 24(5):2257–2261

    Google Scholar 

  • Qian H, Li P, Wu J, Zhou Y (2013) Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan plain., Northwest China. Environ Earth Sci 70(1):57–70. doi:10.1007/s12665-012-2103-3

    Article  Google Scholar 

  • Qian H, Zhang H, Li P, Chen J, Wu J (2014a) Field Investigation report for groundwater pollution and risk management in and around the water source site of Hua County. Xi’an, Chang’an University (in Chinese)

  • Qian H, Wu J, Zhou Y, Li P (2014b) Stable oxygen and hydrogen isotopes as indicators of lake water recharge and evaporation in the lakes of the Yinchuan Plain. Hydrol Process 28:3554–3562. doi:10.1002/hyp.9915

    Article  Google Scholar 

  • Qin D, Turner JV, Pang Z (2005) Hydrogeochemistry and groundwater circulation in the Xi’an geothermal field, China. Geothermics 34:471–494. doi:10.1016/j.geothermics.2005.06.004

    Article  Google Scholar 

  • Ransley T, Tottenham R, Sundaram B, Brodie R (2007) Development of method to map potential stream aquifer connectivity: a case study in the Borders rivers catchment. Bureau of Rural Sciences, Department of Agriculture, Fisheries and Forestry, Australian Government, Canberra

    Google Scholar 

  • Raul SK, Panda SN, Holländer H, Billib M (2011) Integrated water resource management in a major canal command in eastern India. Hydrol Process 25:2551–2562. doi:10.1002/hyp.8028

    Article  Google Scholar 

  • Rodgers P, Soulsby C, Petry J, Malcolm I, Gibbins C, Dunn S (2004) Groundwater–surface-water interactions in a braided river: a tracer-based assessment. Hydrol Process 18:1315–1332. doi:10.1002/hyp.1404

    Article  Google Scholar 

  • Schmidt C, Bayer-Raich M, Schirmer M (2006) Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale. Hydrol Earth Syst Sci 10:849–859. doi:10.5194/hess-10-849-2006

    Article  Google Scholar 

  • Smith AJ, Pollock DW, Palmer D (2010) Groundwater interaction with surface drains in the Ord River Irrigation Area, northern Australia: investigation by multiple methods. Hydrogeol J 18:1235–1252. doi:10.1007/s10040-010-0596-y

    Article  Google Scholar 

  • Song J, Chen X, Cheng C, Wang D, Lackey S, Xu Z (2009) Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds. J Hydrol 375(3–4):428–437. doi:10.1016/j.jhydrol.2009.06.043

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67. doi:10.1007/s10040-001-0170-8

    Article  Google Scholar 

  • Sulis M, Meyerhoff SB, Paniconi C, Maxwell RM, Putti M, Kollet SJ (2010) A comparison of two physics-based numerical models for simulating surface water–groundwater interactions. Adv Water Resour 33:456–467. doi:10.1016/j.advwatres.2010.01.010

    Article  Google Scholar 

  • Vandersteen G, Schneidewind U, Anibas C, Schmidt C, Seuntjens P, Batelaan O (2015) Determining groundwater-surface water exchange from temperature-time series: combining a local polynomial method with a maximum likelihood estimator. Water Resour Res 51:922–939. doi:10.1002/2014WR015994

    Article  Google Scholar 

  • Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water 38(3):423–429. doi:10.1111/j.1745-6584.2000.tb00228.x

    Article  Google Scholar 

  • Wu J, Sun Z (2015) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, Mid-west China. Expo Health. doi:10.1007/s12403-015-0170-x

    Google Scholar 

  • Wu J, Li P, Qian H (2013) Environmental chemistry of groundwater near an industrial area, Northwest China. Asian J Chem 25(17):9795–9799. doi:10.14233/ajchem.2013.15355

    Google Scholar 

  • Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982. doi:10.1007/s12517-013-1057-4

    Article  Google Scholar 

  • Yidana SM, Banoeng-Yakubo B, Akabzaa TM (2010) Analysis of groundwater quality using multivariate and spatial analyses in the Ketabasin, Ghana. J Afr Earth Sci 58:220–234. doi:10.1016/j.jafrearsci.2010.03.003

    Article  Google Scholar 

  • Zhang H (2014) Early-warning of nitrogen pollution in groundwater source in Huaxian, China. A dissertation submitted for the Degree of Master, Chang’an Univeristy, Xi’an (in Chinese)

Download references

Acknowledgments

This work is funded by the Special Funds for Basic Scientific Research of Central Colleges, Chang’an University (310829151072), the National Natural Science Foundation of China (41502234 and 41172212),  the Foundation of Outstanding Young Scholar of Chang’an University (310829153509), the General Financial Grant from the China Postdoctoral Science Foundation (2015M580804), the Special Financial Grant from the Shaanxi Postdoctoral Science Foundation, the special Funds for Scientific Research on Public Interest of the Ministry of Water Resources (201301084) and the Doctoral Postgraduate Technical Project of Chang’an University (2014G5290001). Xinsheng Lyu, Hui Tang, Hanting Zhang, Zhihua Zhang, Hongwei Liu and Jie Chen are specially acknowledged for their help in sample collection and field investigation. We are also grateful to the editor and the anonymous reviewers whose comments have helped us a lot in improving the quality of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyue Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wu, J. & Qian, H. Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River, China. Environ Earth Sci 75, 99 (2016). https://doi.org/10.1007/s12665-015-4949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4949-7

Keywords

Navigation