Skip to main content
Log in

Groundwater pollution by arsenic and other toxic elements in an abandoned silver mine, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study evaluated the impact of an abandoned Ag mine on the quality of surface and groundwater. The mining site of Huautla is in south Morelos State, central Mexico. Ag–Pb–Zn and Au–Cu sulfide ores were mined in the district. The ores were characterized by the presence of Ag, galena (PbS), sphalerite (ZnS), and stromeyerite (CuAgS). Ag was the metal of greater interest. Other metals included Cu, Pb, Zn, and Au. Mining activities stopped in the early 1990s when the market price of Ag decreased; the abandoned mines then were flooded by rising groundwater levels. Because of the urgent demand for water by the inhabitants in the area, this water has been used as drinking water and as waterholes for livestock. Water sampling points included abandoned mines (América, Pajáro, Santiago, Tlachichilpa, and San Francisco), dams, and dug wells. The greatest concentrations of As and other toxic chemical elements (Fe, Mn, Pb, Cd, F) were detected in groundwater samples from flooded mines. The presence of these elements was related to the rock–water interaction process. The oxidation of sulfides appears to be the cause of increased metal concentrations in groundwater samples from flooded mine. Other possible water–rock interaction processes that can control the presence of arsenic in groundwater were the adsorption of arsenic in iron oxyhydroxides, the adsorption in carbonates, and/or coprecipitation with calcite. In the case of the San Francisco and América mines, the oxidation conditions, low correlation of As with SO4 2− and Fe2+, and concentrations of silica indicate that the presence of As in the groundwater could be due also to competition for adsorption sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antunes IMHR, Albuquerque MTD (2013) Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Sci Total Environ 442:545–552. doi:10.1016/j.scitotenv.2012.10.010

    Article  Google Scholar 

  • APHA, Awwa, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, AWWA, WEF, Washington, DC, p 1236

    Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam, p 649

    Book  Google Scholar 

  • Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353. doi:10.1007/s10635-008-9167-8

    Article  Google Scholar 

  • Armienta MA, Villaseñor G, Rodriguez R, Ongley LK, Mango H (2001) The role of arsenic bearing rocks in the groundwater pollution at Zimapan Valley, Mexico. Environ Geol 4–5:571–581

    Article  Google Scholar 

  • Avilés M, Garrido SE, Esteller MV, De La Paz JS, Najera C, Cortés J (2013) Removal of groundwater arsenic using a household filter with iron spikes and stainless steel. J Environ Manag 131:103–109. doi:10.1016/j.jenvman.2013.09.037

    Article  Google Scholar 

  • Bhattacharya P, Jacks G, Ahmed KM, Routh J, Khan AA (2002) Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bull Environ Contam Toxicol 69:538–545

    Article  Google Scholar 

  • Biswas A, Gustafsson JP, Neidhardt H, Halder D, Kundu AK, Chatterjee D, Berner Z, Bhattacharya P (2014) Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res 55(15):30–39. doi:10.1016/j.watres.2014.02.00

    Article  Google Scholar 

  • Boulding JR, Ginn JS (2004) Practical handbook of soil, vadose zone, and ground-water contamination. Assessment, prevention, and remediation, 2nd edn. Lewis Pub, Boca Raton, p 691

    Google Scholar 

  • Bundschuh J, Litter MI, Bhattacharya P (2012) Arsenic in Latin America, an unrevealed continent: occurrence, health effects and mitigation. Sci Total Environ 429:1–332. doi:10.1016/j.scitotenv.2012.04.047 (Special issue)

    Article  Google Scholar 

  • Buragohain M, Bhuyan B, Sarma HP (2010) Seasonal variation of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environ Monit Assess 170:345–351. doi:10.1007/s10661-009-1237-6

    Article  Google Scholar 

  • Carrillo A, Drever JI (1998) Adsorption of arsenic by natural aquifer material in the San Antonio-El Triunfoo mining area, Baja California, Mexico. Environ Geol 35(4):251–257

    Article  Google Scholar 

  • Carrillo-Chávez A, Drever JJ, Martínez M (2000) Arsenic content and groundwater geochemistry of San Antonio-El Triunfo, Carrizal and Los Planes aquifers in southernmost Baja California, Mexico. Environ Geol 39(11):1295–1303

    Article  Google Scholar 

  • Castro-Larragoitia J, Kramar U, Monroy-Fernández MG, Viera-Décida F, García-González EG (2013) Heavy metal and arsenic dispersion in a copper-skarn mining district in a Mexican semi-arid environment: sources, pathways and fate. Environ Earth Sci 69:1915–1929. doi:10.1007/s12665-012-2024-1

    Article  Google Scholar 

  • Chakraborti D, Rahman MM, Murrill M, Das R, Patil SSG, Sarkar A, Dadapeer HJ, Yendigeri S, Ahmed R, Das KK (2013) Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J Hazard Mater 262:1048–1055

    Article  Google Scholar 

  • DOF Diario Oficial de la Federación (2000) Modificación a la Norma Oficial Mexicana NOM 127-SSA1-1994. Salud Ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Secretaria de Salud. México. Diario Oficial de la Federación, 22 de noviembre de 2000

  • DOF Diario Oficial de la Federación (2005) Norma Oficial Mexicana. Salud Ambiental NOM 230-SSA1-2002. Agua para uso y consumo humano. Requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo. Secretaria de Salud. México. Diario Oficial de la Federación, 15 de julio de 2005

  • Flakova R, Zenisova Z, Sracek O, Krcmar D, Ondrejkova I, Chovan M, Lalinská B, Fendekova M (2012) The behavior of arsenic and antimony at Pezinok mining site, southwestern part of the Slovak Republic. Environ Earth Sci 66(4):1043–1057. doi:10.1007/s12665-011-1310-7

    Article  Google Scholar 

  • Gao X, Wang Y, Hy Q, Su C (2011) Effects of anion competitive adsorption on arsenic enrichment in groundwater. J Environ Sci Health Part A 46:471–479. doi:10.1080/10934529.2011.551726

    Article  Google Scholar 

  • Gemici Ü (2008) Evaluation of the water quality related to the acid mine drainage of an abandoned mercury mine (Alaşehir, Turkey). Environ Monit Assess 147:93–106. doi:10.1007/s10661-007-0101-9

    Article  Google Scholar 

  • Gutiérrez-Ojeda C (2009) Determining the origin of arsenic in the Lagunera region aquifer, Mexico using geochemical modeling. In: Bundschuh J, Armienta MA, Biskle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press, Boca Raton, pp 163–170

  • Iskandar I, Koike K (2011) Distinguishing potential sources of arsenic release to groundwater around a fault zone containing a mine site. Environ Earth Sci 63:595–608. doi:10.1007/s12665-010-0727-8

    Article  Google Scholar 

  • Lee JY, Choi JC, Yi MJ, Kim JW, Cheon JY, Choi YK, Choi MJ, Lee KK (2005) Potential groundwater contamination with toxic metals in around an abandoned Zn mine, Korea. Water Air Soil Pollut 165:167–185

    Article  Google Scholar 

  • Martínez-Villegas N, Briones-Gallardo R, Ramos-Leal JA, Avalos-Borja M, Castañón-Sandoval AD, Razo-Flores E, Villalobos M (2013) Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem. Environ Pollut 176:114–122. doi:10.1016/j.envpol.2012.12.025

    Article  Google Scholar 

  • Parkhurst DL Appelo CAJ (1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geol Surv Water Resour Inv Rep 99-4259, p 312

  • Ramos OE, Rötting TS, French M, Sracek O, Bundschuh J, Quintanilla J, Bhattacharya P (2014) Geochemical processes controlling mobilization of arsenic and trace elements in shallow aquifers and surface waters in the Antequera and Poopó mining regions. Bolivian Altiplano. J Hydrol 518(Part C):421–433. doi:10.1007/s12665-011-1288-1

    Article  Google Scholar 

  • Rodriguez R, Ramos JA, Armienta MA (2004) Groundwater arsenic variations: the role of local geology and rainfall. Appl Geochem 19(2):245–250. doi:10.1016/j.apgeochem.2003.09.010

    Article  Google Scholar 

  • Rodríguez-Licea F, Sánchez-Montes de Oca R, Gamboa-Avitia A (1962) Estudio geológico – minero del Distrito de Huautla, Morelos. Archivo Técnico del Consejo de Recursos Minerales. Servicio Geológico Mexicano, México

    Google Scholar 

  • Schulze JG (1959) Contribución al estudio petrológico y mineralógico económico del mineral de Huautla, Morelos. Archivo Técnico del Consejo de Recursos Minerales. Servicio Geológico Mexicano, México

    Google Scholar 

  • SECOFI Secretaría de Comercio y Fomento Industrial (1998) Informe de la carta geológica-minera y geoquímica. Hoja de Cuernavaca E14-5. Secretaría de Comercio y Fomento Industrial. Consejo de Recursos Minerales- Coordinación General de Minería. Chilpancingo, México

  • SGM Servicio Geológico Minero (2008) Monografía geológico-minera del Estado de Morelos. Servicio Geológico Minero. Secretaría de Economía. Gobierno Federal, México

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  Google Scholar 

  • Sracek O, Bhattacharya P, Jacks G, Gustafsson JP, Von Brömssen M (2004) Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Appl Geochem 19:169–180. doi:10.1016/j.apgeochem.2003.09.005

    Article  Google Scholar 

  • Vivona R, Preziosi E, Madé B, Giuliano G (2007) Occurrence of minor toxic elements in volcanic-sedimentary aquifers: a case study in central Italy. Hydrogeol J 15:1183–1196. doi:10.1007/s10040-007-0169-x

    Article  Google Scholar 

  • Waterloo Hydrogeologic Inc (1999) User’s manual. AquaChem (v 3.7)

  • WHO World Health Organization (2006) Guidelines for drinking water quality. World Health Organization, Genève

    Google Scholar 

  • Wilkie JE, Heering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent rations and co-occurring solutes. Colloids Surf A 107(20):97–110

    Article  Google Scholar 

  • Winkela LHE, Casentinia B, Bardellid F, Voegelina A, Nikolaidisd NP, Charlete L (2013) Speciation of arsenic in Greek travertines: co-precipitation of arsenate with calcite. Geochim Cosmochim Acta 106(1):99–110. doi:10.1016/j.gca.2012.11.049

    Article  Google Scholar 

  • Wurl J, Mendez-Rodriguez L, Acosta-Vargas B (2014) Arsenic content in groundwater from the southern part of the San Antonio-El Triunfo mining district, Baja California Sur, Mexico. J Hydrol 518:447–459. doi:10.1016/j.jhydrol.2014.05.009

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Consejo Nacional de Ciencia y Tecnología de México (CONACYT, Project No. 47076). We appreciate comments by the anonymous reviewers, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Esteller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteller, M.V., Domínguez-Mariani, E., Garrido, S.E. et al. Groundwater pollution by arsenic and other toxic elements in an abandoned silver mine, Mexico. Environ Earth Sci 74, 2893–2906 (2015). https://doi.org/10.1007/s12665-015-4315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4315-9

Keywords

Navigation