Skip to main content
Log in

Heavy metal and arsenic dispersion in a copper-skarn mining district in a Mexican semi-arid environment: sources, pathways and fate

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Cu–Au rich ores of the Concepción del Oro mining district, located on the semi-arid Mexican Altiplano, have been mined for over 400 years. The residues of these activities were piled on the banks of the main stream that drains the area. The tailings piles are neither treated nor protected, so the waste material has been dispersed over the surroundings by seasonally occurring heavy rains and winds. A small town with 5,000 inhabitants has grown up around the mining operations. Mineralogical observations indicate that sulphates are the first products of alteration of the primary sulphides and that Fe hydroxides are the stable minerals that are formed after longer periods of time. At the present time, an area of about 40 km2 along both sides of the stream has being severely contaminated with Cu–As–Zn-rich tailings, indicating that the seasonal heavy rains are indeed the main dispersion factor. Contaminated soils reach Cu-concentrations of up to 100 times, and As-concentrations of up to 20 times the local natural values. Factor analysis and geostatistical methods helped to identify pollutant origins and sources. Extraction tests on polluted agricultural soils using acetic acid mobilized 5–10 % of the total As content, 0.5–2.75 and 1–4.5 % of Cu and Zn, respectively, indicating the potential of the biological activity of the soil to enhance the mobility of the elements mentioned, and, in this way, to get into the food chain and/or groundwater. Stabilization measures of the tailings heaps must be urgently undertaken in order to minimize the risk for the inhabitants of the region and to stop the pollution of a broader area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Árcega-Cabrera F, Armienta MA, Daesslé LW, Castillo-Blum SE, Talavera O, Dótor A (2009) Variations of Pb in a mine-impacted tropical river, Taxco, Mexico: use of geochemical, isotopic and statistical tools. Appl Geochem 24:162–171

    Article  Google Scholar 

  • Carrillo A, Drever JI (1998) Adsorption of arsenic by natural aquifer material in the San Antonio-El Triunfo mining area. Baja California Mexico Environ Geol 35(4):251–257. doi:10.1007/s002540050311

    Article  Google Scholar 

  • Castañeda J (1927) Los distritos cupríferos de Mazapil y Concepción del Oro. Bol Min 24:443–453

    Google Scholar 

  • Castro J, Kramar U, Puchelt H (1997) 200 years of mining activities at La Paz/San Luis Potosí/Mexico- Consequences to environment and geochemical exploration. J Geochem Expl 58:81–91

    Article  Google Scholar 

  • Chopin EIB, Alloway BJ (2007) Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Riotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air and Soil Pollut 182:245–261. doi:10.1007/s11270-007-9336-x

    Article  Google Scholar 

  • CRM Consejo de Recursos Minerales (1992) Geological-Mining Monograph of the State of Zacatecas

  • DIN 19684 T1 (1977) Chemische Laboruntersuchungen. Bestimmung des ph-Wertes des Bodens und Ermittlung des Kalkbedarfs. Berlin

  • DOF. Diario Oficial de la Federación (2000) Norma Oficial Mexicana NOM-127-SSA/1-1995

  • DOF. Diario Oficial de la Federación (2004) Norma Oficial Mexicana NOM-141-SEMARNAT-2003

  • DOF. Diario Oficial de la Federación (2007) Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004

  • Espinosa E, Armienta MA, Cruz O, Aguayo A, Ceniceros N (2009) Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapán, a historical polymetalic mining zone of Mexico. Environ Geol 58:1467–1477. doi:10.1007/s00254-008-1649-6

    Article  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324

    Article  Google Scholar 

  • FAO (2006) IUSS Working Group; World Reference Basis for Soils Resources. World soils resources report 103

  • Fendorf S, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and Chromate Retention Mechanisms on Goethite. 1 Surface Structure. Environ Sci Technol 31:315–320

    Article  Google Scholar 

  • Fernández-Caliani JC, Barba-Brioso C, González I, Galán E (2009) Heavy metal pollution in soils around the abandoned mine sites of the Iberian pyrite belt (Southwest Spain). Water Air Soil Pollut 200:211–226. doi:10.1007/s11270-008-9905-7

    Article  Google Scholar 

  • Fletcher WK (1981) Analytical methods in geochemical prospecting. In: Govett GJS (ed) Handbook of exploration geochemistry, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • García-Meza JV, Ramos E, Carrillo-Chávez A, Duran-de-Bazúa C (2004) Mineralogical and chemical characterization of historical mine tailings from the Valenciana Mine, Guanajuato, Mexico: environmental implications. Bull Environ Contam Toxicol 72(1):170–177. doi:10.1007/s00128-003-0256-1

    Article  Google Scholar 

  • Golden Software (2002) Surfer Version 8.02 Surface Mapping System

  • INEGI, Instituto Nacional de Estadística, Geografía e Informática. (2004) Aspectos Geográficos. Zacatecas

  • INEGI, Instituto Nacional de Estadística, Geografía e Informática. (2011) Resultados Finales del Censo Nacional de Población y Vivienda 2010

  • Jambor JL (1994) Mineralogy of sulphide rich tailings and their oxidation products. In: Jambor JL, Blowes DW (eds) Short course handbook on environmental geochemistry of sulphide mine-waste, vol 22. Mineralogical Association of Canada, Nepean, pp 59–102

    Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC-Press, Boca Raton

    Google Scholar 

  • Kramar U (1984) First experience with a tube-excited energy-dispersive X-ray fluorescence in field laboratories. J Geochem Explor 21:373–383

    Article  Google Scholar 

  • Kramar U (1993) Methoden zur Interpretation von Daten der geochemischen Bachsedimentprospektion am Beispiel der Sierra de San Carlos/Tamaulipas, Mexiko. Karlsruher Geochemischer Hefte 1

  • Kramar U (1997) Multivariate and geostatistical methods in environmental monitoring and geochemical exploration. In: Gottlieb J et al. (eds) Fieldscreening Europe: proceedings of the first international conference on strategies and techniques for the investigation and monitoring of contaminated sites. Kluwer, Dordrecht-Boston-London, pp 109–112

  • Mapes EV, Montero Z, Godoy GJ (1964) Geología y yacimientos minerales del Distrito Concepción del Oro y Avalos, Zacatecas. Consejo de Recursos Naturales No Renovables. Publicación 10-E, México, DF

  • Marin B, Valladon M, Polve M, Monaco A (1997) Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in marine reference sediment by inductively coupled plasma-mass spectrometry. Anal Chim Acta 342:91–112

    Article  Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its applications. Les Cahiers du Centre de Morph. Mathematique de Fontainbleau

  • NMX Normas Mexicanas (2012) Comité Técnico de Normalización Nacional de Sistemas y Equipos de Riego. http://www.imta.gob.mx/cotennser/index.php?option=com_content&view=article&id=94&Itemid=85. Accessed 08 July 2012

  • Nelson DW, Sommers LE (1982) Chapter 29: total Carbon, organic carbon, and organic matter. In: Page AL, Miller RH (eds) Methods of soil analysis. Part 2 chemical and microbiological properties. Number 9 (Part 2) in the series Agronomy. American Society of Agronomy, Inc., Madison, pp 539–579

  • Ohmoto H, Hart SR, Holland HD (1966) Studies in the Providencia Area Mexico. II:k-Ar and Rb-Sr ages of the intrusive rocks and hydrothermal minerals. Econ Geol 61:1205–1213

    Article  Google Scholar 

  • Quevauviller P, Rauret G, Ure AM, Rubio R, López-Sánchez JF, Fiedler HD, Griepink B (1994) Evaluation of a sequential procedure for the determination of extractable trace metal contents in sediments. Fresenius J Anal Chem 349:808–814

    Article  Google Scholar 

  • Ramos-Arroyo YR, Prol-Ledesma RM, Siebe-Grabach C (2004) Características geológicas y mineralógicas e historia de extracción del Distrito de Guanajuato, México. Posibles escenarios geoquímicos para los residuos mineros. Revista Mexicana de Ciencias Geológicas 21(2):268–284

  • Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152

    Article  Google Scholar 

  • Rodda D, Johnson B, Wells J (1993) The effect of temperature and pH on the adsorption of Copper (II), Lead (II), and Zinc (II) onto Goethite. J Colloid Interface Sci 161:57–62

    Article  Google Scholar 

  • Salzsauler KA, Sidenko NV, Sherriff BL (2005) Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Appl Geochem 20:2303–2314

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Thornton I (1996) Impacts of mining on the environment: some local, regional and global issues. Appl Geochem 11:355–361

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACYT-Mexico) for Grant 25602-T and for support for sabbatical leave (JCL); the Universidad Autónoma de San Luis Potosí (UASLP) for Grant C01-FAI-4-9-36; the Universidad Autónoma de Nuevo León for Grant CT036-98 and the German Academic Exchange Service (DAAD) that also contributed with economic support for this work. Authors thank the anonymous reviewers for their valuable suggestions that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Castro-Larragoitia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro-Larragoitia, J., Kramar, U., Monroy-Fernández, M.G. et al. Heavy metal and arsenic dispersion in a copper-skarn mining district in a Mexican semi-arid environment: sources, pathways and fate. Environ Earth Sci 69, 1915–1929 (2013). https://doi.org/10.1007/s12665-012-2024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2024-1

Keywords

Navigation