Skip to main content

Advertisement

Log in

A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease

  • Narrative review
  • Published:
Indian Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is an immune mediated chronic inflammatory disorder of gastrointestinal tract, which has underlying multifactorial pathogenic determinants such as environmental factors, susceptibility genes, gut microbial dysbiosis and a dysregulated immune response. Human gut is a frequent inhabitant of complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi and other microorganisms that have an undisputable role in maintaining balanced homeostasis. All of these microbes interact with immune system and affect human gut physiology either directly or indirectly with interaction of each other. Intestinal fungi represent a smaller but crucial component of the human gut microbiome. Besides interaction with bacteriome and virome, it helps in balancing homoeostasis between pathophysiological and physiological processes, which is often dysregulated in patients with IBD. Understanding of gut mycobiome and its clinical implications are still in in its infancy as opposed to bacterial component of gut microbiome, which is more often focused. Modulation of gut mycobiome represents a novel and promising strategy in the management of patients with IBD. Emerging mycobiome-based therapies such as diet interventions, fecal microbiota transplantation (FMT), probiotics (both fungal and bacterial strains) and antifungals exhibit substantial effects in calibrating the gut mycobiome and restoring dysbalanced immune homeostasis by restoring the core gut mycobiome. In this review, we summarized compositional and functional diversity of the gut mycobiome in healthy individuals and patients with IBD, gut mycobiome dysbiosis in patients with IBD, host immune-fungal interactions and therapeutic role of modulation of intestinal fungi in patients with IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19 Suppl A:5A-36A.

    Article  PubMed  Google Scholar 

  2. Ng SC, Bernstein CN, Vatn MH, et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut. 2013;62:630–49.

    Article  PubMed  Google Scholar 

  3. Benjamin JL, Hedin CR, Koutsoumpas A, et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis. 2012;18:1092–100.

    Article  PubMed  Google Scholar 

  4. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang M, Ahrné S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol. 2005;54:219–31.

    Article  CAS  PubMed  Google Scholar 

  6. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Iliev ID, Cadwell K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology. 2021;160:1050–66.

    Article  CAS  PubMed  Google Scholar 

  8. Richard ML, Lamas B, Liguori G, Hoffmann TW, Sokol H. Gut fungal microbiota: the Yin and Yang of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:656–65.

    Article  PubMed  Google Scholar 

  9. Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. Fungi as part of the microbiota and interactions with intestinal bacteria. Curr Top Microbiol Immunol. 2019;422:265–301.

    CAS  PubMed  Google Scholar 

  10. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14:405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schei K, Avershina E, Øien T, et al. Early gut mycobiota and mother-offspring transfer. Microbiome. 2017;5:107.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liguori G, Lamas B, Richard ML, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohns disease patients. J Crohn’s Colitis. 2016;10:296–305.

    Article  Google Scholar 

  16. Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5:153.

  17. Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8:e66019.

  18. Wu L, Zeng T, Deligios M, et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. Msphere. 2020;5:e00558-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lai S, Yan Y, Pu Y, et al. Enterotypes of the human gut mycobiome. Microbiome. 2023;11:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sokol H, Leducq V, Aschard H, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66:1039–48.

    Article  CAS  PubMed  Google Scholar 

  21. Cao Y, Wang L, Ke S, et al. Analysis of intestinal mycobiota of patients with Clostridioides difficile infection among a prospective inpatient cohort. Microbiol Spectr. 2022;10:e0136222.

    Article  PubMed  Google Scholar 

  22. Zhang L, Zhan H, Xu W, Yan S, Ng SC. The role of gut mycobiome in health and diseases. Therap Adv Gastroenterol. 2021;14:17562848211047130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jeziorek M, Frej-Mądrzak M, Choroszy-Król I. The influence of diet on gastrointestinal Candida spp. colonization and the susceptibility of Candida spp. to antifungal drugs. Rocz Panstw Zakl Hig. 2019;70:195–200.

    Article  CAS  PubMed  Google Scholar 

  24. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336:1314–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenbaum J, Usyk M, Chen Z, et al. Evaluation of oral cavity DNA extraction methods on bacterial and fungal microbiota. Sci Rep. 2019;9:1531.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37:97–106.

    Article  CAS  PubMed  Google Scholar 

  28. Limon JJ, Tang J, Li D, et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019;25:377-88.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Debelius J, Song SJ, Vazquez-Baeza Y, Xu ZZ, Gonzalez A, Knight R. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 2016;17:217.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huseyin CE, Rubio RC, O’Sullivan O, Cotter PD, Scanlan PD. The fungal frontier: a comparative analysis of methods used in the study of the human gut mycobiome. Front Microbiol. 2017;8:1432.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials—a mycologist’s perspective. Mycologia. 2015;107:1057–73.

    Article  CAS  PubMed  Google Scholar 

  32. Angebault C, Ghozlane A, Volant S, Botterel F, d’Enfert C, Bougnoux ME. Combined bacterial and fungal intestinal microbiota analyses: impact of storage conditions and DNA extraction protocols. PLoS One. 2018;13:e0201174.

  33. Fiedorová K, Radvanský M, Němcová E, et al. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Front Microbiol. 2019;10:821.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sugiyama M, Xie XY, Atomi Y, Saito M. Differential diagnosis of small polypoid lesions of the gallbladder: the value of endoscopic ultrasonography. Ann Surg. 1999;229:498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tedersoo L, Anslan S, Bahram M, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 2015;10:1–43.

    Article  Google Scholar 

  36. Barfod KK, Poulsen SS, Hammer M, Larsen ST. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice. BMC Microbiol. 2010;10:233.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109.

    Article  CAS  PubMed  Google Scholar 

  38. Tiew PY, Mac Aogain M, Ali NABM, et al. The mycobiome in health and disease: emerging concepts, methodologies and challenges. Mycopathologia. 2020;185:207–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindahl BD, Nilsson RH, Tedersoo L, et al. Fungal community analysis by high-throughput sequencing of amplified markers–a user’s guide. New Phytol. 2013;199:288–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao B, Chi L, Zhu Y, et al. An introduction to next generation sequencing bioinformatic analysis in gut microbiome studies. Biomolecules. 2021;11:530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online. 2016;12 Suppl 1:5–16.

    Google Scholar 

  42. Marcelino VR, Irinyi L, Eden JS, Meyer W, Holmes EC, Sorrell TC. Metatranscriptomics as a tool to identify fungal species and subspecies in mixed communities–a proof of concept under laboratory conditions. IMA Fungus. 2019;10:12.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thielemann N, Herz M, Kurzai O, Martin R. Analyzing the human gut mycobiome - A short guide for beginners. Comput Struct Biotechnol J. 2022;20:608–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.

    Article  CAS  PubMed  Google Scholar 

  45. Flynn JM, Brown EA, Chain FJ, MacIsaac HJ, Cristescu ME. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol Evol. 2015;5:2252–66.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Westcott SL, Schloss PD. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ. 2015;3:e1487.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44:846–9.

    Article  CAS  Google Scholar 

  48. Kõljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.

    Article  PubMed  Google Scholar 

  49. Nilsson RH, Hyde KD, Pawłowska J, et al. Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity. 2014;67:11–9.

    Article  Google Scholar 

  50. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44:2933–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  53. Wijayawardene NN, Bahram M, Sánchez-Castro I, et al. Current insight into culture-dependent and culture-independent methods in discovering Ascomycetous Taxa. J Fungi (Basel). 2021;7:703.

    Article  CAS  PubMed  Google Scholar 

  54. Soeta N, Terashima M, Gotoh M, et al. An improved rapid quantitative detection and identification method for a wide range of fungi. J Med Microbiol. 2009;58 Pt 8:1037–44.

    Article  Google Scholar 

  55. Hoarau G, Mukherjee PK, Gower-Rousseau C, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio. 2016;7:e01250–16. https://doi.org/10.1128/mbio.01250-16.

  56. Kombrink A, Tayyrov A, Essig A, et al. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. ISME J. 2019;13:588–602.

    Article  CAS  PubMed  Google Scholar 

  57. Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal peptides as therapeutic agents. Front Cell Infect Microbiol. 2020;10:105.

  58. Lambooij JM, Hoogenkamp MA, Brandt BW, Janus MM, Krom BP. Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria. Fungal Genet Biol. 2017;109:1–6.

    Article  CAS  PubMed  Google Scholar 

  59. Noverr MC, Huffnagle GB. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun. 2004;72:6206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. García C, Tebbji F, Daigneault M, et al. The human gut microbial metabolome modulates fungal growth via the TOR signaling pathway. mSphere. 2017;2:e00555–17. https://doi.org/10.1128/msphere.00555-17.

  61. Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe. 2022;3:e969–83.

  62. Hsu C, Ghannoum M, Cominelli F, et al. Mycobiome and inflammatory bowel disease: role in disease pathogenesis, current approaches and novel nutritional-based therapies. Inflamm Bowel Dis. 2023;29:470–9.

  63. Ott SJ, Kühbacher T, Musfeldt M, et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol. 2008;43:831–41.

    Article  CAS  PubMed  Google Scholar 

  64. Li XV, Leonardi I, Putzel GG, et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature. 2022;603:672–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell. 2013;12:470–81.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Doron I, Mesko M, Li XV, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol. 2021;6:1493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532:64–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leonardi I, Li X, Semon A, et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science. 2018;359:232–6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8:352–8.

    Article  CAS  PubMed  Google Scholar 

  71. Sougioultzis S, Simeonidis S, Bhaskar KR, et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochem Biophys Res Commun. 2006;343:69–76.

    Article  CAS  PubMed  Google Scholar 

  72. Dahan S, Dalmasso G, Imbert V, Peyron JF, Rampal P, Czerucka D. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect Immun. 2003;71:766–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dalmasso G, Cottrez F, Imbert V, et al. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology. 2006;131:1812–25.

    Article  CAS  PubMed  Google Scholar 

  74. Jawhara S, Poulain D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med Mycol. 2007;45:691–700.

    Article  CAS  PubMed  Google Scholar 

  75. Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. J Clin Invest. 2022;132:e155786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chehoud C, Albenberg LG, Judge C, et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1948–56.

    Article  PubMed  Google Scholar 

  77. Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol. 2014;48:513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jain U, Ver Heul AM, Xiong S, et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science. 2021;371:1154–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jun X, Ning C, Yang S, et al. Alteration of fungal microbiota after 5-ASA treatment in UC patients. Inflamm Bowel Dis. 2020;26:380–90.

    Article  PubMed  Google Scholar 

  80. Iliev ID. Mycobiota–host immune interactions in IBD: coming out of the shadows. Nat Rev Gastroenterol Hepatol. 2022;19:91–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hsia K, Zhao N, Chung M, et al. Alterations in the fungal microbiome in ulcerative colitis. Inflamm Bowel Dis. 2023;29:1613–21.

    Article  PubMed  Google Scholar 

  82. Jangi S, Hsia K, Zhao N, et al. Dynamics of the gut mycobiome in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2023:S1542-3565(23)00762-0.

  83. Krawczyk A, Salamon D, Kowalska-Duplaga K, et al. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of Crohn’s disease. World J Gastroenterol. 2023;29:2172–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gross O, Poeck H, Bscheider M, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459:433–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Hise AG, Tomalka J, Ganesan S, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hager CL, Isham N, Schrom KP, et al. Effects of a novel probiotic combination on pathogenic bacterial-fungal polymicrobial biofilms. mBio. 2019;10:e00338–19.

  87. Di Martino L, De Salvo C, Buela KA, et al. Candida tropicalis infection modulates the gut microbiome and confers enhanced susceptibility to colitis in mice. Cell Mol Gastroenterol Hepatol. 2022;13:901–23.

    Article  PubMed  Google Scholar 

  88. Li W, Shu Y, Zhang J, et al. Long-term prednisone treatment causes fungal microbiota dysbiosis and alters the ecological interaction between gut mycobiome and bacteriome in rats. Front Microbiol. 2023;14:1112767.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yan P-G, Li J-N. Advances in the understanding of the intestinal micro-environment and inflammatory bowel disease. Chin Med J. 2020;133:834–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang S, Zhang Y-R, Yu Y-B. The important role of fungi in inflammatory bowel diseases. Scand J Gastroenterol. 2021;56:1312–22.

    Article  CAS  PubMed  Google Scholar 

  91. Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schirbel A, Shouval DS, Hebecker B, Hube B, Sturm A, Werner L. Intestinal epithelial cells and T cells differentially recognize and respond to Candida albicans yeast and hypha. Eur J Immunol. 2018;48:1826–37.

    Article  CAS  PubMed  Google Scholar 

  93. Chiaro TR, Soto R, Zac Stephens W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med. 2017;9:eaaf9044.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Caër C, Wick MJ. Human intestinal mononuclear phagocytes in health and inflammatory bowel disease. Front Immunol. 2020;11:410.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chikina AS, Nadalin F, Maurin M, et al. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell. 2020;183:411–28.e16.

  96. Di Paola M, Rizzetto L, Stefanini I, et al. Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn’s disease patients and their interactions with the gut microbiome. J Transl Autoimmun. 2020;3:100036.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6:67–78.

    Article  CAS  PubMed  Google Scholar 

  98. Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.

    Article  CAS  PubMed  Google Scholar 

  99. Duarte-Silva M, Afonso PC, de Souza PR, et al. Reappraisal of antibodies against Saccharomyces cerevisiae (ASCA) as persistent biomarkers in quiescent Crohn’s disease. Autoimmunity. 2019;52:37–47.

    Article  CAS  PubMed  Google Scholar 

  100. Pérez T, Balcázar JL, Ruiz-Zarzuela I, et al. Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 2010;3:355–60.

    Article  PubMed  Google Scholar 

  101. Seow CH, Stempak JM, Xu W, et al. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am J Gastroenterol. 2009;104:1426–34.

    Article  CAS  PubMed  Google Scholar 

  102. Ost KS, O’Meara TR, Stephens WZ, et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature. 2021;596:114–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecology. 2015;15:9–17.

  104. Suhr MJ, Banjara N, Hallen-Adams HE. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol. 2016;62:209–15.

    Article  CAS  PubMed  Google Scholar 

  105. Gunsalus KT, Tornberg-Belanger SN, Matthan NR, Lichtenstein AH, Kumamoto CA. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans. mSphere. 2015;1:e00020–15. https://doi.org/10.1128/mSphere.00020-15

  106. Kostovcikova K, Coufal S, Galanova N, et al. Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice. Front Immunol. 2019;10:919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lam S, Zuo T, Ho M, Chan FKL, Chan PKS, Ng SC. Fungal alterations in inflammatory bowel diseases. Aliment Pharmacol Ther. 2019;50:1159–71.

    Article  PubMed  Google Scholar 

  108. Lewis JD, Chen EZ, Baldassano RN, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe. 2015;18:489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun Y, Zuo T, Cheung CP, et al. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China. Gastroenterology. 2021;160:272-86. e11.

  110. Tannock GW, Liu Y. Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota. J R Soc N Z. 2020;50:434–55.

    Article  Google Scholar 

  111. Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9:8872.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  112. Ghannoum M, Smith C, Adamson E, Isham N, Salem I, Retuerto M. Effect of mycobiome diet on gut fungal and bacterial communities of healthy adults. J Prob Health. 2019;7:215.

    Google Scholar 

  113. Klassert TE, Hanisch A, Bräuer J, et al. Modulatory role of vitamin A on the C andida albicans-induced immune response in human monocytes. Med Microbiol Immunol. 2014;203:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bouzid D, Merzouki S, Bachiri M, Ailane SE, Zerroug MM. Vitamin D3 a new drug against Candida albicans. J Mycol Med. 2017;27:79–82.

    Article  CAS  PubMed  Google Scholar 

  115. Xie J, Zhu L, Zhu T, et al. Zinc supplementation reduces Candida infections in pediatric intensive care unit: a randomized placebo-controlled clinical trial. J Clin Biochem Nutr. 2019;64:170–3.

    Article  CAS  PubMed  Google Scholar 

  116. Baunwall SMD, Lee MM, Eriksen MK, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine. 2020;29–30:100642.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mullish BH, Quraishi MN, Segal JP, et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut. 2018;67:1920–41.

    Article  PubMed  Google Scholar 

  118. Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  119. Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102-9. e6.

    Article  PubMed  Google Scholar 

  120. Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–28.

    Article  PubMed  Google Scholar 

  121. Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321:156–64.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Haifer C, Paramsothy S, Kaakoush NO, et al. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol. 2022;7:141–51.

    Article  PubMed  Google Scholar 

  123. Tan XY, Xie YJ, Liu XL, Li XY, Jia B. A systematic review and meta-analysis of randomized controlled trials of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Evid Based Complement Alternat Med. 2022;2022:8266793.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Feng J, Chen Y, Liu Y, et al. Efficacy and safety of fecal microbiota transplantation in the treatment of ulcerative colitis: a systematic review and meta-analysis. Sci Rep. 2023;13:14494.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Weingarden AR, Vaughn BP. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes. 2017;8:238–52.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lam S, Bai X, Shkoporov AN, et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol. 2022;7:472–84.

    Article  PubMed  Google Scholar 

  127. Leonardi I, Paramsothy S, Doron I, et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe. 2020;27:823-9.e3.

  128. Standaert-Vitse A, Sendid B, Joossens M, et al. Candida albicanscolonization and ASCA in familial Crohn’s disease. Am J Gastroenterol. 2009;104:1745–53.

    Article  CAS  PubMed  Google Scholar 

  129. Mukhopadhya I, Hansen R, Meharg C, et al. The fungal microbiota of de-novo paediatric inflammatory bowel disease. Microbes Infect. 2015;17:304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Qiu X, Ma J, Jiao C, et al. Alterations in the mucosa-associated fungal microbiota in patients with ulcerative colitis. Oncotarget. 2017;8:107577–88.

    Article  PubMed  PubMed Central  Google Scholar 

  131. El Mouzan MI, Korolev KS, Al Mofarreh MA, et al. Fungal dysbiosis predicts the diagnosis of pediatric Crohn’s disease. World J Gastroenterol. 2018;24:4510–6.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Imai T, Inoue R, Kawada Y, et al. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2019;54:149–59.

    Article  CAS  PubMed  Google Scholar 

  133. Qiu X, Zhao X, Cui X, et al. Characterization of fungal and bacterial dysbiosis in young adult Chinese patients with Crohn’s disease. Therap Adv Gastroenterol. 2020;13:1756284820971202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nelson A, Stewart CJ, Kennedy NA, et al. The Impact of NOD2 genetic variants on the gut mycobiota in Crohn’s disease patients in remission and in individuals without gastrointestinal inflammation. J Crohns Colitis. 2021;15:800–12.

    Article  PubMed  Google Scholar 

  135. Zeng L, Feng Z, Zhuo M, et al. Fecal fungal microbiota alterations associated with clinical phenotypes in Crohn’s disease in southwest China. PeerJ. 2022;10:e14260.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tursi A, Brandimarte G, Papa A, et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL# 3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2010;105:2218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sivananthan K, Petersen AM. Review of Saccharomyces boulardii as a treatment option in IBD. Immunopharmacol Immunotoxicol. 2018;40:465–75.

    Article  CAS  PubMed  Google Scholar 

  138. Canonici A, Pellegrino E, Siret C, et al. Saccharomyces boulardii improves intestinal epithelial cell restitution by inhibiting αvβ5 integrin activation state. PLoS One. 2012;7:e45047.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sen S, Mansell TJ. Yeasts as probiotics: mechanisms, outcomes, and future potential. Fungal Genet Biol. 2020;137:103333.

    Article  CAS  PubMed  Google Scholar 

  140. Thomas S, Metzke D, Schmitz J, Dörffel Y, Baumgart DC. Anti-inflammatory effects of Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn’s disease and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1083-92.

    Article  CAS  PubMed  Google Scholar 

  141. Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol. 2003;15:697–8.

    Article  PubMed  Google Scholar 

  142. Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci. 2000;45:1462–4.

    Article  CAS  PubMed  Google Scholar 

  143. De Lourdes De Abreu Ferrari M, Sales Da Cunha A. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand J Gastroenterol. 2008;43:842–8.

  144. Bourreille A, Cadiot G, Le Dreau G, et al. Saccharomyces boulardii does not prevent relapse of Crohn’s disease. Clin Gastroenterol Hepatol. 2013;11:982–7.

    Article  PubMed  Google Scholar 

  145. Ghannoum MA, McCormick TS, Retuerto M, et al. Evaluation of microbiome alterations following consumption of BIOHM, a novel probiotic. Curr Issues Mol Biol. 2021;43:2135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Di Martino L, Osme A, Ghannoum M, Cominelli F. A novel probiotic combination ameliorates Crohn’s disease–like ileitis by increasing short-chain fatty acid production and modulating essential adaptive immune pathways. Inflamm Bowel Dis. 2023;29:1105–17.

  147. Huo X, Li D, Wu F, et al. Cultivated human intestinal fungus Candida metapsilosis M2006B attenuates colitis by secreting acyclic sesquiterpenoids as FXR agonists. Gut. 2022;71:2205–17.

    Article  CAS  PubMed  Google Scholar 

  148. Larsen IS, Jensen BAH, Bonazzi E, et al. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis. Gut Microbes. 2021;13:1988836.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Scott BM, Gutiérrez-Vázquez C, Sanmarco LM, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med. 2021;27:1212–22.

  150. Bhaskaran N, Quigley C, Paw C, et al. Role of short chain fatty acids in controlling tregs and immunopathology during mucosal infection. Front Microbiol. 2018;9:1995.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lührs H, Gerke T, Müller JG, et al. Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol. 2002;37:458–66.

    Article  PubMed  Google Scholar 

  152. Jena A, Dutta U, Shah J, et al. Oral fluconazole therapy in patients with active ulcerative colitis who have detectable candida in the stool: a double-blind randomized placebo-controlled trial. J Clin Gastroenterol. 2022;56:705–11.

    Article  CAS  PubMed  Google Scholar 

  153. Sendid B, Salvetat N, Sarter H, et al. A pilot clinical study on post-operative recurrence provides biological clues for a role of Candida yeasts and fluconazole in Crohn’s disease. J Fungi (Basel). 2021;7:324.

    Article  CAS  PubMed  Google Scholar 

  154. Zwolińska-Wcisło M, Sliwowski Z, Drozdowicz D, et al. Candidiasis in the experimental model of ulcerative colitis. Folia Med Cracov. 2007;48:71–84.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amit Yadav: writing—original draft; writing—review and editing; Renu Yadav: writing—original draft; writing—review and editing; Vishal Sharma: writing—review and editing; Usha Dutta: writing—review and editing.

Corresponding author

Correspondence to Usha Dutta.

Ethics declarations

Conflict of interest

AY, RY, VS and UD declare no competing interests.

Disclaimer

The authors are solely responsible for the data and the content of the paper. In no way, the Honorary Editor-in-Chief, Editorial Board Members, the Indian Society of Gastroenterology or printer/publishers are responsible for the results/findings and content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Yadav, R., Sharma, V. et al. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease. Indian J Gastroenterol 43, 112–128 (2024). https://doi.org/10.1007/s12664-023-01510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12664-023-01510-0

Keywords

Navigation