Skip to main content
Log in

Effects of Extraction Methods on the Physicochemical, Structural, Functional Properties and Biological Activities of Extracted Polysaccharides from Ononis natrix Leaves

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Polysaccharides were extracted from Ononis natrix leaves using various methods, including hot water maceration (HWM), ultrasound-assisted extraction (USE), enzyme-assisted extraction (ENE), combined enzyme-ultrasound (EUS) and combined maceration-ultrasound (MUS) treatment. The extracted crude polysaccharides were characterized in terms of physicochemical, structural, techno-functional features, and biological activities. HWM extraction showed the highest yield (13.7 ± 0.3%), carbohydrate content (54.1 ± 1.4%), and uronic acid content (23.7 ± 0.8%) compared to other methods. The various polysaccharides were characterized using SEM, FT-IR, NMR, and TGA. All polysaccharides obtained using different methods present similar structural characteristics and exhibit outstanding techno-functional properties (solubility, water-holding capacity, and emulsifying properties). The antioxidant and antibacterial activities of polysaccharides were evaluated using DPPH radical-scavenging capacity, ferric reducing activity power (FRAP), iron chelating capacity, total antioxidant activity, and agar diffusion test, respectively. The results indicate that HWM polysaccharides present the best overall biological activities. It is thus concluded that polysaccharides from O. natrix leaves could be a promising natural source as functional foods or potential therapeutic agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Kumar, M., Prakash, S., Radha Kumari, N., Pundir, A., Punia, S., Saurabh, V., Choudhary, P., Changan, S., Dhumal, S., Pradhan, P.C., Alajil, O., Singh, S., Sharma, N., Ilakiya, T., Singh, S., Mekhemar, M.: Beneficial Role of Antioxidant Secondary Metabolites from Medicinal Plants in Maintaining Oral Health. Antioxidants 10, 1061 (2021). https://doi.org/10.3390/antiox10071061

    Article  Google Scholar 

  2. Liao, W., Luo, Z., Liu, D., Ning, Z., Yang, J., Ren, J.: Structure Characterization of a Novel Polysaccharide from Dictyophora indusiata and Its Macrophage Immunomodulatory Activities. J. Agric. Food Chem. 63, 535–544 (2015). https://doi.org/10.1021/jf504677r

    Article  Google Scholar 

  3. Prakash, P., Radha Kumar, M., Pundir, A., Puri, S., Prakash, S., Kumari, N., Thakur, M., Rathour, S., Jamwal, R., Janjua, S., Ali, M., Bangar, S.P., Singh, C., Chandran, D., Rajalingam, S., Senapathy, M., Dhumal, S., Singh, S., Samota, M.K., Damale, R.D., Changan, S., Natta, S., Alblihed, M., El-kott, A.F., Abdel-Daim, M.M.: Documentation of Commonly Used Ethnoveterinary Medicines from Wild Plants of the High Mountains in Shimla District, Himachal Pradesh, India. Horticulturae 7, 351 (2021). https://doi.org/10.3390/horticulturae7100351

    Article  Google Scholar 

  4. Liu, J., Willför, S., Xu, C.: A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Diet. Fibre. 5, 31–61 (2015). https://doi.org/10.1016/j.bcdf.2014.12.001

    Article  Google Scholar 

  5. Sasi, M., Kumar, S., Kumar, M., Thapa, S., Prajapati, U., Tak, Y., Changan, S., Saurabh, V., Kumari, S., Kumar, A., Hasan, M., Chandran, D., Radha Bangar, S.P., Dhumal, S., Senapathy, M., Thiyagarajan, A., Alhariri, A., Dey, A., Singh, S., Prakash, S., Pandiselvam, R., Mekhemar, M.: Garlic (Allium sativum L.) Bioactives and Its Role in Alleviating Oral Pathologies. Antioxidants 10, 1847 (2021). https://doi.org/10.3390/antiox10111847

    Article  Google Scholar 

  6. Singh, R.P., Prakash, S., Bhatia, R., Negi, M., Singh, J., Bishnoi, M., Kondepudi, K.K.: Generation of structurally diverse pectin oligosaccharides having prebiotic attributes. Food Hydrocoll. 108, 105988 (2020). https://doi.org/10.1016/j.foodhyd.2020.105988

    Article  Google Scholar 

  7. Albuquerque, P.B.S., De Oliveira, W.F., Dos Santos Silva, P.M., Dos Santos Correia, M.T., Kennedy, J.F., Coelho, L.C.B.B.: Skincare application of medicinal plant polysaccharides — A review. Carbohydr. Polym. 277, 118824 (2022). https://doi.org/10.1016/j.carbpol.2021.118824

    Article  Google Scholar 

  8. Fernandes, P.A.R., Coimbra, M.A.: The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 314, 120965 (2023). https://doi.org/10.1016/j.carbpol.2023.120965

    Article  Google Scholar 

  9. Tang, Y., He, X., Liu, G., Wei, Z., Sheng, J., Sun, J., Li, C., Xin, M., Li, L., Yi, P.: Effects of different extraction methods on the structural, antioxidant and hypoglycemic properties of red pitaya stem polysaccharide. Food Chem. 405, 134804 (2023). https://doi.org/10.1016/j.foodchem.2022.134804

    Article  Google Scholar 

  10. Bai, C., Chen, R., Zhang, Y., Bai, H., Tian, L., Sun, H., Li, D., Wu, W.: Comparison in structural, physicochemical and functional properties of sweet potato stems and leaves polysaccharide conjugates from different technologies. Int. J. Biol. Macromol. 247, 125730 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125730

    Article  Google Scholar 

  11. Song, Z., Xiong, X., Huang, G.: Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. Ultrason. Sonochem. 95, 106416 (2023). https://doi.org/10.1016/j.ultsonch.2023.106416

    Article  Google Scholar 

  12. Huang, H., Huang, G.: Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem. Biol. Drug Des. 96, 1209–1222 (2020)

    Article  Google Scholar 

  13. Yin, X., You, Q., Jiang, Z.: Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydr. Polym. 86, 1358–1364 (2011)

    Article  Google Scholar 

  14. Qu, C., Yu, S., Luo, L., Zhao, Y., Huang, Y.: Optimization of ultrasonic extraction of polysaccharides from Ziziphus jujuba Mill. by response surface methodology. Chem. Cent. J. 7, 1–7 (2013)

    Article  Google Scholar 

  15. Chaudhary, S.A., Shahiwala, A.F.: Medicated chewing gum – a potential drug delivery system. Expert Opin. Drug Deliv. 7, 871–885 (2010). https://doi.org/10.1517/17425247.2010.493554

    Article  Google Scholar 

  16. Yousaf, M., Al-Rehaily, A.J., Ahmad, M.S., Mustafa, J., Al-Yahya, M.A., Al-Said, M.S., Zhao, J., Khan, I.A.: A 5-alkylresorcinol and three3,4-dihydroisocoumarins derived from Ononis natrix. Phytochem. Lett. 13, 1–5 (2015). https://doi.org/10.1016/j.phytol.2015.05.002

    Article  Google Scholar 

  17. Sanfeliciano, A., Barrero, A., Medarde, M., Migueldelcorral, J., Calle, M.: An isocoumarin and other phenolic components of Ononis natrix. Phytochemistry 22, 2031–2033 (1983). https://doi.org/10.1016/0031-9422(83)80038-7

    Article  Google Scholar 

  18. Mhamdi, B., Abbassi, F., Abdelly, C.: Chemical composition, antioxidant and antimicrobial activities of the edible medicinal O. natrix growing wild in Tunisia. Nat. Prod. Res. 29, 1157–1160 (2015). https://doi.org/10.1080/14786419.2014.981188

    Article  Google Scholar 

  19. Maruhenda, R.E.: Study of antibacterial activity of flowering tops of Ononis natrix L. Biruniya (Morocco) 2(2), 117–120 (1986)

    Google Scholar 

  20. Al-Bakri, A.G., Afifi, F.U.: Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J. Microbiol. Methods 68, 19–25 (2007). https://doi.org/10.1016/j.mimet.2006.05.013

    Article  Google Scholar 

  21. Barrero, A.F., Herrador, M.M., Arteaga, P., Cabrera, E., Rodriguez-Garcia, I., Garcia-Moreno, M., Gravalos, D.G., Barrero, A.F., Herrador, M.M., Arteaga, P., Cabrera, E., Rodriguez-Garcia, I., Garcia-Moreno, M., Gravalos, D.G.: Cytotoxic activity of flavonoids from Carthamus arborescens, O natrixssp, Ramosissima and Centaurea malacitana. Fitoterapia 68, 281–283 (1997)

    Google Scholar 

  22. Cañedo, L.M., Miguel Del Corral, J.M., San Feliciano, A.: 5-alkylresorcinols from Ononis natrix. Phytochemistry 44, 1559–1563 (1997). https://doi.org/10.1016/S0031-9422(96)00755-8

    Article  Google Scholar 

  23. Al-Khalil, S., Masalmeh, A., Abdalla, S., Tosa, H., Iinuma, M.: N-Arachidylanthranilic Acid, a New Derivative from Ononis natrix. J. Nat. Prod. 58, 760–763 (1995). https://doi.org/10.1021/np50119a018

    Article  Google Scholar 

  24. Chebli, B., Hassani, L.M.I., Hmamouchi, M.: Acides gras et polyphénols des graines d’O. natrix L. (Fabaceae) de la région d’Agadir. Maroc. Acta Bot. Gallica. 148, 333–340 (2001). https://doi.org/10.1080/12538078.2001.10515919

    Article  Google Scholar 

  25. Liu, G., Xu, S., Chen, L.: Chemical composition and bioactivities of a water-soluble polysaccharide from the endodermis of shaddock. Int. J. Biol. Macromol. 51, 763–766 (2012). https://doi.org/10.1016/j.ijbiomac.2012.07.012

    Article  Google Scholar 

  26. Wang, K., Li, M., Wen, X., Chen, X., He, Z., Ni, Y.: Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) Moench) polysaccharides based on response surface methodology and antioxidant activity. Int. J. Biol. Macromol. 114, 1056–1063 (2018)

    Article  Google Scholar 

  27. Oh, M.H., Yoon, K.Y.: Comparison of the biological activity of crude polysaccharide fractions obtained from Cedrela sinensis using different extraction methods. Pol. J. Food Nutr. Sci. 68, 327–334 (2018)

    Article  Google Scholar 

  28. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  29. Blumenkrantz, N., Asboe-Hansen, G.: New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489 (1973)

    Article  Google Scholar 

  30. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Article  Google Scholar 

  31. Horwitz, W., Albert, R.: The Horwitz ratio (HorRat): a useful index of method performance with respect to precision. J. AOAC Int. 89, 1095–1109 (2006)

    Article  Google Scholar 

  32. Timilsena, Y.P., Adhikari, R., Kasapis, S., Adhikari, B.: Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym. 136, 128–136 (2016). https://doi.org/10.1016/j.carbpol.2015.09.035

    Article  Google Scholar 

  33. Lin, M.J.Y., Humbert, E.S., Sosulski, F.W.: Certain Functional Properties of Sunflower Meal Products. J. Food Sci. 39, 368–370 (1974). https://doi.org/10.1111/j.1365-2621.1974.tb02896.x

    Article  Google Scholar 

  34. Ktari, N., Feki, A., Trabelsi, I., Triki, M., Maalej, H., Slima, S.B., Nasri, M., Amara, I.B., Salah, R.B.: Structure, functional and antioxidantproperties in Tunisianbeefsausage of a novel polysaccharide from Trigonellafoenum-graecumseeds. Int. J. Biol. Macromol. 98, 69–81 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.113

    Article  Google Scholar 

  35. Bersuder, P., Hole, M., Smith, G.: Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J. Am. Oil Chem. Soc. 75, 181–187 (1998). https://doi.org/10.1007/s11746-998-0030-y

    Article  Google Scholar 

  36. Yıldırım, A., Mavi, A., Kara, A.A.: Determination of Antioxidant and Antimicrobial Activities of Rumex crispus L. Extracts. J. Agric. Food Chem. 49, 4083–4089 (2001). https://doi.org/10.1021/jf0103572

    Article  Google Scholar 

  37. Carter, P.: Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem. 40, 450–458 (1971). https://doi.org/10.1016/0003-2697(71)90405-2

    Article  Google Scholar 

  38. Prieto, P., Pineda, M., Aguilar, M.: Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 269, 337–341 (1999). https://doi.org/10.1006/abio.1999.4019

    Article  Google Scholar 

  39. VandenBerghe, D.A., Vlietinck, A.J.: Screening methods for antibacterial agents from higher plants. In: Dey, P.M., Harborne, J.B., Hostettman, K. (eds.) Methods in plant biochemistry, assay for bioactivity, vol. 6, pp. 47–69. Academic Press, London (1991)

    Google Scholar 

  40. Zhao, C., Li, X., Miao, J., Jing, S., Li, X., Huang, L., Gao, W.: The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi. Int. J. Biol. Macromol. 102, 847–856 (2017). https://doi.org/10.1016/j.ijbiomac.2017.04.031

    Article  Google Scholar 

  41. Olawuyi, I.F., Kim, S.R., Hahn, D., Lee, W.Y.: Influences of combined enzyme-ultrasonic extraction on the physicochemical characteristics and properties of okra polysaccharides. Food Hydrocoll. 100, 105396 (2020). https://doi.org/10.1016/j.foodhyd.2019.105396

    Article  Google Scholar 

  42. Alba, K., Laws, A.P., Kontogiorgos, V.: Isolation and characterization of acetylated LM-pectins extracted from okra pods. Food Hydrocoll. 43, 726–735 (2015). https://doi.org/10.1016/j.foodhyd.2014.08.003

    Article  Google Scholar 

  43. You, Q., Yin, X., Zhao, Y.: Enzyme assisted extraction of polysaccharides from the fruit of Cornus officinalis. Carbohydr. Polym. 98, 607–610 (2013). https://doi.org/10.1016/j.carbpol.2013.06.036

    Article  Google Scholar 

  44. Ghlissi, Z., Kallel, R., Krichen, F., Hakim, A., Zeghal, K., Boudawara, T., Bougatef, A., Sahnoun, Z.: Polysaccharide from Pimpinella anisum seeds: Structural characterization, anti-inflammatory and laser burn wound healing in mice. Int. J. Biol. Macromol. 156, 1530–1538 (2020)

    Article  Google Scholar 

  45. Yan, Y., Li, X., Wan, M., Chen, J., Li, S., Cao, M., Zhang, D.: Effect of extraction methods on property and bioactivity of water-soluble polysaccharides from Amomum villosum. Carbohydr. Polym. 117, 632–635 (2015). https://doi.org/10.1016/j.carbpol.2014.09.070

    Article  Google Scholar 

  46. Hajji, M., Falcimaigne-Gordin, A., Ksouda, G., Merlier, F., Thomasset, B., Nasri, M.: A water-soluble polysaccharide from Anethum graveolens seeds: Structural characterization, antioxidant activity and potential use as meat preservative. Int. J. Biol. Macromol. 167, 516–527 (2021)

    Article  Google Scholar 

  47. Yi, Y., Xu, W., Wang, H.-X., Huang, F., Wang, L.-M.: Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr. Polym. 234, 115896 (2020)

    Article  Google Scholar 

  48. Cheng, Z., Song, H., Yang, Y., Liu, Y., Liu, Z., Hu, H., Zhang, Y.: Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill. Int. J. Biol. Macromol. 76, 161–168 (2015). https://doi.org/10.1016/j.ijbiomac.2015.01.048

    Article  Google Scholar 

  49. Dong, H., Lin, S., Zhang, Q., Chen, H., Lan, W., Li, H., He, J., Qin, W.: Effect of extraction methods on the properties and antioxidant activities of Chuanminshen violaceum polysaccharides. Int. J. Biol. Macromol. 93, 179–185 (2016). https://doi.org/10.1016/j.ijbiomac.2016.08.074

    Article  Google Scholar 

  50. Li, X., Wang, L.: Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides. Int. J. Biol. Macromol. 83, 270–276 (2016). https://doi.org/10.1016/j.ijbiomac.2015.11.060

    Article  Google Scholar 

  51. Nie, C., Zhu, P., Ma, S., Wang, M., Hu, Y.: Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce. Carbohydr. Polym. 188, 236–242 (2018). https://doi.org/10.1016/j.carbpol.2018.02.009

    Article  Google Scholar 

  52. Gu, J., Zhang, H., Yao, H., Zhou, J., Duan, Y., Ma, H.: Comparison of characterization, antioxidant and immunological activities of three polysaccharides from Sagittaria sagittifolia L. Carbohydr. Polym. 235, 115939 (2020). https://doi.org/10.1016/j.carbpol.2020.115939

    Article  Google Scholar 

  53. Chen, G., Fang, C., Ran, C., Tan, Y., Yu, Q., Kan, J.: Comparison of different extraction methods for polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products. Int. J. Biol. Macromol. 130, 903–914 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.038

    Article  Google Scholar 

  54. Fu, Y., Yuan, Q., Lin, S., Liu, W., Du, G., Zhao, L., Zhang, Q., Lin, D.-R., Liu, Y.-T., Qin, W., Li, D.-Q., Wu, D.-T.: Physicochemical characteristics and biological activities of polysaccharides from the leaves of different loquat (Eriobotrya japonica) cultivars. Int. J. Biol. Macromol. 135, 274–281 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.157

    Article  Google Scholar 

  55. Rong, Y., Yang, R., Yang, Y., Wen, Y., Liu, S., Li, C., Hu, Z., Cheng, X., Li, W.: Structural characterization of an active polysaccharide of longan and evaluation of immunological activity. Carbohydr. Polym. 213, 247–256 (2019). https://doi.org/10.1016/j.carbpol.2019.03.007

    Article  Google Scholar 

  56. Gao, H., Wen, J.-J., Hu, J.-L., Nie, Q.-X., Chen, H.-H., Xiong, T., Nie, S.-P., Xie, M.-Y.: Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohydr. Polym. 201, 624–633 (2018). https://doi.org/10.1016/j.carbpol.2018.08.075

    Article  Google Scholar 

  57. Zhu, Z., Liu, N., Si, C., Liu, Y., Ding, L., Jing, C., Liu, A., Zhang, Y.: Structure and anti-tumor activity of a high-molecular-weight polysaccharide from cultured mycelium of Cordyceps gunnii. Carbohydr. Polym. 88, 1072–1076 (2012). https://doi.org/10.1016/j.carbpol.2012.01.068

    Article  Google Scholar 

  58. Jha, N., Sivagnanavelmurugan, M., Prasad, P., Lakra, A.K., Ayyanna, R., Domdi, L., Arul, V.: Physicochemical properties, preliminary characterization, and assessment of potential bioactivities of polysaccharide purified from the leaves of Avicennia marina. Biocatal. Agric. Biotechnol. 35, 102110 (2021). https://doi.org/10.1016/j.bcab.2021.102110

    Article  Google Scholar 

  59. Gao, J., Zhang, T., Jin, Z.-Y., Xu, X.-M., Wang, J.-H., Zha, X.-Q., Chen, H.-Q.: Structural characterisation, physicochemical properties and antioxidant activity of polysaccharide from Lilium lancifolium Thunb. Food Chem. 169, 430–438 (2015). https://doi.org/10.1016/j.foodchem.2014.08.016

    Article  Google Scholar 

  60. Medlej, M.K., Cherri, B., Nasser, G., Zaviska, F., Hijazi, A., Li, S., Pochat-Bohatier, C.: Optimization of polysaccharides extraction from a wild species of Ornithogalum combining ultrasound and maceration and their anti-oxidant properties. Int. J. Biol. Macromol. 161, 958–968 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.021

    Article  Google Scholar 

  61. Nep, E.I., Conway, B.R.: Physicochemical characterization of grewia polysaccharide gum: Effect of drying method. Carbohydr. Polym. 84, 446–453 (2011). https://doi.org/10.1016/j.carbpol.2010.12.005

    Article  Google Scholar 

  62. Xu, Y., Liu, G., Yu, Z., Song, X., Li, X., Yang, Y., Wang, L., Liu, L., Dai, J.: Purification, characterization and antiglycation activity of a novel polysaccharide from black currant. Food Chem. 199, 694–701 (2016). https://doi.org/10.1016/j.foodchem.2015.12.078

    Article  Google Scholar 

  63. Lundqvist, J., Teleman, A., Junel, L., Zacchi, G., Dahlman, O., Tjerneld, F., Stålbrand, H.: Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr. Polym. 48, 29–39 (2002). https://doi.org/10.1016/S0144-8617(01)00210-7

    Article  Google Scholar 

  64. Rozi, P., Abuduwaili, A., Mutailifu, P., Gao, Y., Rakhmanberdieva, R., Aisa, H.A., Yili, A.: Sequential extraction, characterization and antioxidant activity of polysaccharides from Fritillaria pallidiflora Schrenk. Int. J. Biol. Macromol. 131, 97–106 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.029

    Article  Google Scholar 

  65. Darwish, A.M.G., Khalifa, R.E., El Sohaimy, S.A.: Functional Properties of Chia Seed Mucilage Supplemented In Low Fat Yoghurt. Alex. Sci. Exch. J. 39, 450–459 (2018). https://doi.org/10.21608/asejaiqjsae.2018.13882

    Article  Google Scholar 

  66. Wu, Z., Li, H., Wang, Y., Yang, D., Tan, H., Zhan, Y., Yang, Y., Luo, Y., Chen, G.: Optimization extraction, structural features and antitumor activity of polysaccharides from Z. jujuba cv. Ruoqiangzao seeds. Int. J. Biol. Macromol. 135, 1151–1161 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.020

    Article  Google Scholar 

  67. Peng, W., Wu, Q., Tu, P.: Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production. J. Appl. Phycol. 13, 5–12 (2001). https://doi.org/10.1023/A:1008153831875

    Article  Google Scholar 

  68. Axelos, M.A.V., Lefebvre, J., Qiu, C.G., Rao, M.A.: Rheology of pectin dispersions and gels. In: Walter, R.H. (ed.). Chem. Technol. Pectin. San Diego: Academic Press, pp. 227–250 (1991)

  69. Punia, S., Dhull, S.B.: Chia seed (Salvia hispanica L.) mucilage (a heteropolysaccharide): Functional, thermal, rheological behaviour and its utilization. Int. J. Biol. Macromol. 140, 1084–1090 (2019)

    Article  Google Scholar 

  70. Rashid, F., Ahmed, Z., Hussain, S., Huang, J.-Y., Ahmad, A.: Linum usitatissimum L. seeds: Flax gum extraction, physicochemical and functional characterization. Carbohydr. Polym. 215, 29–38 (2019)

    Article  Google Scholar 

  71. Jeddou, K.B., Chaari, F., Maktouf, S., Nouri-Ellouz, O., Helbert, C.B., Ghorbel, R.E.: Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem. 205, 97–105 (2016)

    Article  Google Scholar 

  72. Funami, T., Nakauma, M., Ishihara, S., Tanaka, R., Inoue, T., Phillips, G.O.: Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hydrocoll. 25, 221–229 (2011)

    Article  Google Scholar 

  73. Fu, L., Wang, Y., Wang, J., Yang, Y., Hao, L.: Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta. Food Funct. 4, 871–879 (2013)

    Article  Google Scholar 

  74. Jiang, L., Wang, W., Wen, P., Shen, M., Li, H., Ren, Y., Xiao, Y., Song, Q., Chen, Y., Yu, Q., Xie, J.: Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocoll. 100, 105412 (2020). https://doi.org/10.1016/j.foodhyd.2019.105412

    Article  Google Scholar 

  75. Guo, Y., Wang, L., Li, L., Zhang, Z., Zhang, J., Zhang, J., Wang, J.: Characterization of polysaccharide fractions from Allii macrostemonis bulbus and assessment of their antioxidant. LWT. 165, 113687 (2022). https://doi.org/10.1016/j.lwt.2022.113687

    Article  Google Scholar 

  76. Chen, H., Zeng, J., Wang, B., Cheng, Z., Xu, J., Gao, W., Chen, K.: Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydr. Polym. 266, 118149 (2021). https://doi.org/10.1016/j.carbpol.2021.118149

    Article  Google Scholar 

  77. Jing, Y., Zhang, S., Wang, F., Hu, B., Sun, S., Zhang, D., Zheng, Y., Wu, L.: Structure-activity relationship of antioxidant polysaccharides from Salvia miltiorrhiza based on multiple fingerprint profiles and chemometrics analysis. LWT. 174, 114473 (2023). https://doi.org/10.1016/j.lwt.2023.114473

    Article  Google Scholar 

  78. Hajji, M., Hamdi, M., Sellimi, S., Ksouda, G., Laouer, H., Li, S., Nasri, M.: Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks. Carbohydr. Polym. 206, 380–388 (2019). https://doi.org/10.1016/j.carbpol.2018.11.020

    Article  Google Scholar 

  79. Zhu, Z., Chen, J., Chen, Y., Ma, Y., Yang, Q., Fan, Y., Fu, C., Limsila, B., Li, R., Liao, W.: Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT. 154, 112805 (2022). https://doi.org/10.1016/j.lwt.2021.112805

    Article  Google Scholar 

  80. Ahmad, M.M.: Characterization and antioxidant activities of polysaccharides extracted from flageolet bean pods waste. Curr. Res. Green Sustain. Chem. 4, 100154 (2021). https://doi.org/10.1016/j.crgsc.2021.100154

    Article  Google Scholar 

  81. Kehrer, J.P.: The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149, 43–50 (2000)

    Article  Google Scholar 

  82. Eljoudi, S., Feki, A., Bkhairia, I., Barkia, A., Ben Amara, I., Nasri, M., Hajji, M.: New polysaccharides extracted from Matthiola longipetala: Structure characterization, biological properties and application to beef meat preservation. J. Food Compos. Anal. 107, 104380 (2022). https://doi.org/10.1016/j.jfca.2021.104380

    Article  Google Scholar 

  83. Wang, Z.-B., Pei, J.-J., Ma, H.-L., Cai, P.-F., Yan, J.-K.: Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides. Carbohydr. Polym. 109, 49–55 (2014). https://doi.org/10.1016/j.carbpol.2014.03.057

    Article  Google Scholar 

  84. Liu, J., Zhang, Z., Deng, Y., Chen, G.: Effect of extraction method on the structure and bioactivity of polysaccharides from activated sludge. Water Res. 253, 121196 (2024). https://doi.org/10.1016/j.watres.2024.121196

    Article  Google Scholar 

  85. Wang, J., Guo, H., Zhang, J., Wang, X., Zhao, B., Yao, J., Wang, Y.: Sulfated modification, characterization and structure–antioxidant relationships of Artemisia sphaerocephala polysaccharides. Carbohydr. Polym. 81, 897–905 (2010)

    Article  Google Scholar 

  86. Wu, H., Shang, H., Guo, Y., Zhang, H., Wu, H.: Comparison of different extraction methods of polysaccharides from cup plant (Silphium perfoliatum L.). Process Biochem. 90, 241–248 (2020). https://doi.org/10.1016/j.procbio.2019.11.003

    Article  Google Scholar 

  87. Zhu, H., Sheng, K., Yan, E., Qiao, J., Lv, F.: Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int. J. Biol. Macromol. 50, 840–843 (2012)

    Article  Google Scholar 

  88. Ben Yakoub, A.R., Abdehedi, O., Jridi, M., Elfalleh, W., Bkhairia, I., Nasri, M., Ferchichi, A.: Bioactive polysaccharides and their soluble fraction from Tossa jute (Corchorus olitorius L.) leaves. Food Biosci. 37, 100741 (2020). https://doi.org/10.1016/j.fbio.2020.100741

    Article  Google Scholar 

  89. Ren, L., Hemar, Y., Perera, C.O., Lewis, G., Krissansen, G.W., Buchanan, P.K.: Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioact. Carbohydr. Diet. Fibre. 3, 41–51 (2014)

    Article  Google Scholar 

  90. Qiao, Y., Shen, Y., Jiang, H., Li, D., Li, B.: Structural characterization, antioxidant and antibacterial activity of three pectin polysaccharides from blueberry. Int. J. Biol. Macromol. 262, 129707 (2024). https://doi.org/10.1016/j.ijbiomac.2024.129707

    Article  Google Scholar 

Download references

Acknowledgements

This researchworkwasconducted in the framework of PHC-Utique Program, (partenariat Hubert Curien « Utique » du Ministère de l’Europe et des Affaires Etrangères français et du Ministère de l’Enseignement et de la Recherche Scientifique tunisien) financed by CMCU (Comité mixte de coopération universitaire), grant N° : 19G0815.

Funding

This study was supported by the Ministry of Higher Education and Scientific Research (MESRS) in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Hajji or Suming Li.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty

This work aimed to extract polysaccharides from the leaves of O. natrix using different methods such as hot water maceration (HWM), ultrasonic-assisted extraction (USE), enzyme-assisted extraction (ENE), combined enzyme-ultrasonic assisted extraction (EUS), and combined maceration-ultrasonic assisted extraction (MUS). The extracted polysaccharides were then investigated in terms of their physicochemical properties, structural characteristics, functional properties, antioxidant activities, and antibacterial activity against seven different bacteria strains. The results of this study may provide technical support and an experimental basis for the full valorization of the above-ground part of this Tunisian plant as a source of biopolymers in various fields.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhiri, N., Hajji, M., Nasri, R. et al. Effects of Extraction Methods on the Physicochemical, Structural, Functional Properties and Biological Activities of Extracted Polysaccharides from Ononis natrix Leaves. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02546-9

Keywords

Navigation