Skip to main content
Log in

Physicochemical properties and in vitro bioactivities of polysaccharides from lotus leaves extracted by different techniques and solvents

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the effect of four kinds of extraction technologies and three solvents on the chemical and biological functions of water-soluble polysaccharides from lotus leaves (LLPs). Results revealed that the yields, basically chemical compositions, molecular weight distributions, compositional monosaccharides, FT-IR spectra, and apparent viscosities of LLPs varied by different technologies, especially by different solvents. All LLPs from lotus leaves possessed obvious biological properties, including antioxidant abilities and inhibitory effects against digestive enzymes. Especially, the lower molecular weight distribution and higher content of uronic acids were observed in polysaccharides extracted by deep eutectic solvent (DES) assisted extraction and DES-microwave assisted extraction, respectively, which might contribute to their stronger antioxidant abilities and inhibitory effects against digestive enzymes. Furthermore, the strong biological activities of alkali extracted polysaccharides were also closely associated with its low molecular weight and high content of proteins. Besides, polysaccharides extracted by pressurized water extraction exhibited strong bioactivities than that of LLPs extracted by other extraction technologies. These findings could provide fundamental knowledge to choose suitable processes for preparing LLPs with desired biological functions and extend the application of polysaccharides from lotus leaves in the functional food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Zeng, Y. Xu, B. Zhang, Biol. Trace Elem. Res. 176(2), 321–327 (2017). https://doi.org/10.1007/s12011-016-0829-6

    Article  CAS  PubMed  Google Scholar 

  2. L. Zhang, Z.C. Tu, H. Wang, Y. Kou, Q.H. Wen, Z.F. Fu, H.X. Chang, Int. J. Biol. Macromol. 74, 103–110 (2015). https://doi.org/10.1016/j.ijbiomac.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  3. C. Guo, N. Zhang, C. Liu, J. Xue, J. Chu, X. Yao, Acta Physiol. Plant. 42(2), 14 (2020). https://doi.org/10.1007/s11738-019-2992-9

    Article  CAS  Google Scholar 

  4. A.R. Kim, S.M. Jeong, M.J. Kang, Y.H. Jang, H.N. Choi, J.I. Kim, Nutr Res Pract. 7(3), 166–171 (2013). https://doi.org/10.4162/nrp.2013.7.3.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Wang, Q. Shen, L. Hu, Y. Hu, X. Ye, D. Liu, J. Chen, Food Hydrocoll. 81, 191–199 (2018). https://doi.org/10.1016/j.foodhyd.2018.02.020

    Article  CAS  Google Scholar 

  6. Y. Zhu, P. Hu, J. Yao, D. Xu, Y. Xu, Q. Tan, Fish Shellfish Immunol. 93, 1–7 (2019). https://doi.org/10.1016/j.fsi.2019.07.039

    Article  CAS  PubMed  Google Scholar 

  7. Y.R. Song, A.R. Han, S.G. Park, C.W. Cho, Y.K. Rhee, H.D. Hong, Int. J. Biol. Macromol. 153, 169–179 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.252

    Article  CAS  PubMed  Google Scholar 

  8. Y.H. Hwang, S.A. Jang, A. Lee, C.W. Cho, Y.R. Song, H.D. Hong, H. Ha, T. Kim, Int. J. Biol. Macromol. 161, 449–456 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.059

    Article  CAS  PubMed  Google Scholar 

  9. D.T. Wu, W. Liu, M.L. Xian, G. Du, X. Liu, J.J. He, P. Wang, W. Qin, L. Zhao, Foods. 9(4), 456 (2020). https://doi.org/10.3390/foods9040456

    Article  CAS  PubMed Central  Google Scholar 

  10. Y. Fu, F. Li, Y. Ding, H.Y. Li, X.R. Xiang, Q. Ye, J. Zhang, L. Zhao, W. Qin, R.Y. Gan, D.T. Wu, Int. J. Biol. Macromol. 146, 508–517 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.273

    Article  CAS  PubMed  Google Scholar 

  11. C. Chen, P.P. Wang, Q. Huang, L.J. You, R.H. Liu, M.M. Zhao, X. Fu, Z.G. Luo, Food Funct. 10(6), 3684–3695 (2019). https://doi.org/10.1039/c9fo00026g

    Article  CAS  PubMed  Google Scholar 

  12. Y. Sun, S. Hou, S. Song, B. Zhang, C. Ai, X. Chen, N. Liu, Int. J. Biol. Macromol. 112, 985–995 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.066

    Article  CAS  PubMed  Google Scholar 

  13. J.K. Yan, Z.C. Ding, X. Gao, Y.Y. Wang, Y. Yang, D. Wu, H.N. Zhang, C, Carbohydr. Polym. 193, 373–382 (2018). https://doi.org/10.1016/j.carbpol.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  14. M.D. Mtetwa, L. Qian, H. Zhu, F. Cui, X. Zan, W. Sun, D. Wu, Y. Yang, J. Food Meas. Charact. 14(3), 1223–1235 (2020). https://doi.org/10.1007/s11694-019-00371-6

    Article  Google Scholar 

  15. R. Hashemifesharaki, E. Xanthakis, Z. Altintas, Y. Guo, S.M.T. Gharibzahedi, Carbohydr. Polym. 240, 116301 (2020). https://doi.org/10.1016/j.carbpol.2020.116301

    Article  CAS  PubMed  Google Scholar 

  16. Q. Yuan, S. Lin, Y. Fu, X.R. Nie, W. Liu, Y. Su, Q.H. Han, L. Zhao, Q. Zhang, D.R. Lin, W. Qin, D.T. Wu, Int. J. Biol. Macromol. 127, 178–186 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  17. Y.J. Cho, A.T. Getachew, P.S. Saravana, B.S. Chun, Bioact. Carbohydr. Diet. Fibre. 18, 100179 (2019). https://doi.org/10.1016/j.bcdf.2019.100179

    Article  CAS  Google Scholar 

  18. L. Zhang, M. Wang, I.J. Biol, Macromol. 95, 675–681 (2017). https://doi.org/10.1016/j.ijbiomac.2016.11.096

    Article  CAS  Google Scholar 

  19. P.S. Saravana, Y.N. Cho, H.C. Woo, B.-S. Chun, J. Clean. Prod. 198, 1474–1484 (2018). https://doi.org/10.1016/j.jclepro.2018.07.151

    Article  CAS  Google Scholar 

  20. S. Chen, H. Shang, J. Yang, R. Li, H. Wu, Ind Crops Prod. 121, 18–25 (2018). https://doi.org/10.1016/j.indcrop.2018.04.063

    Article  CAS  Google Scholar 

  21. B. Tang, H. Zhang, K.H. Row, J. Sep. Sci. 38(6), 1053–1064 (2015). https://doi.org/10.1002/jssc.201401347

    Article  CAS  PubMed  Google Scholar 

  22. X. Lin, X. Ji, M. Wang, S. Yin, Q. Peng, Int. J. Biol. Macromol. 136, 607–615 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.117

    Article  CAS  PubMed  Google Scholar 

  23. H. Guo, Q. Yuan, Y. Fu, W. Liu, Y.H. Su, H. Liu, C.Y. Wu, L. Zhao, Q. Zhang, D.R. Lin, H. Chen, W. Qin, D.T. Wu, Polymers. 11(2), 215 (2019). https://doi.org/10.3390/polym11020215

    Article  CAS  PubMed Central  Google Scholar 

  24. X. Guo, W. Zhao, X. Liao, X. Hu, J. Wu, X. Wang, LWT. 79, 640–646 (2017). https:.//doi.org/10.106/j.lwt. 2016.12.001

    Article  CAS  Google Scholar 

  25. J.H. Li, W. Li, S. Luo, C.H. Ma, S.X. Liu, Molecules. 24(7), 1288 (2019). https://doi.org/10.3390/molecules24071288

    Article  CAS  PubMed Central  Google Scholar 

  26. Y. Yao, Y. Zhu, G. Ren, Int. J. Biol. Macromol. 84, 289–294 (2016). https://doi.org/10.1016/j.ijbiomac.2015.12.045

    Article  CAS  Google Scholar 

  27. W. Liu, F. Li, P. Wang, X. Liu, J.J. He, M.L. Xian, L. Zhao, W. Qin, R.Y. Gan, D.T. Wu, Int. J. Biol. Macromol. 148, 1211–1221 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.211

    Article  CAS  PubMed  Google Scholar 

  28. Y. Fu, Q. Yuan, S. Lin, W. Liu, G. Du, L. Zhao, Q. Zhang, D.R. Lin, Y.T. Liu, W. Qin, D.Q. Li, D.T. Wu, Int. J. Biol. Macromol. 135, 274–281 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.157

    Article  CAS  PubMed  Google Scholar 

  29. M. Plaza, M.L. Marina, Trends Analyt Chem. 116, 236–247 (2019). https://doi.org/10.1016/B978-0-08-100596-5.22818-7

    Article  CAS  Google Scholar 

  30. X. Chen, G. Chen, Z. Wang, J. Kan, Int. J. Biol. Macromol. 151, 635–649 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.222

    Article  CAS  PubMed  Google Scholar 

  31. J. Zhou, P. Zou, C. Jing, Z. Xu, S. Zhou, Y. Li, C. Zhang, Y. Yuan, J. Food Meas. Charact. 14(1), 244–253 (2019). https://doi.org/10.1007/s11694-019-00286-2

    Article  Google Scholar 

  32. X. Wei, M. Chen, J. Xiao, Y. Liu, L. Yu, H. Zhang, Y. Wang, Carbohydr. Polym. 79(2), 418–422 (2010). https://doi.org/10.1016/j.carbpol.2009.08.030

    Article  CAS  Google Scholar 

  33. L.Y. Li, Y.X. Wang, T. Zhang, J.F. Zhang, M. Pan, X.J. Huang, J.Y. Yin, S.P. Nie, Carbohydr. Polym. 249, 116813 (2020). https://doi.org/10.1016/j.carbpol.2020.116813

    Article  CAS  PubMed  Google Scholar 

  34. J.Q. Zhang, C. Li, Q. Huang, L.-J. You, C. Chen, X. Fu, R.H. Liu, Food Funct. 10(1), 410–421 (2019). https://doi.org/10.1039/c8fo02190b

    Article  CAS  PubMed  Google Scholar 

  35. X. Ji, C. Hou, Y. Yan, M. Shi, Y. Liu, Int. J. Biol. Macromol. 149, 1008–1018 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.018

    Article  CAS  PubMed  Google Scholar 

  36. D.T. Wu, Y. He, M.X. Fu, R.Y. Gan, Y.C. Hu, L. Zou, Foods. 10(10), 2322 (2021). https://doi.org/10.3390/foods10102322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D.T. Wu, Y. He, M.X. Fu, R.Y. Gan, Y.C. Hu, L.X. Peng, G. Zhao, L. Zou, Food Hydrocoll. 122, 107085 (2022). https://doi.org/10.1016/j.foodhyd.2021.107085

    Article  CAS  Google Scholar 

  38. D.T. Wu, K.L. Feng, L. Huang, R.Y. Gan, Y.C. Hu, L. Zou, Foods. 10(10), 2330 (2021). https://doi.org/10.3390/foods10102330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. L. Zou, D. Wu, G. Ren, Y. Hu, L. Peng, J. Zhao, P. Garcia-Perez, M. Carpena, M.A. Prieto, H. Cao, K.W. Cheng, M. Wang, J. Simal-Gandara, O.D. John, K.R.R. Rengasamy, G. Zhao, J. Xiao, Crit Rev Food Sci Nutr.(2021). https://doi.org/10.1080/10408398.2021.1952161

    Article  PubMed  Google Scholar 

  40. Z. Dou, C. Chen, X. Fu, Food Hydrocoll. 96, 568–576 (2019). https://doi.org/10.1016/j.foodhyd.2019.06.002

    Article  CAS  Google Scholar 

  41. Y. Ren, K. Liang, Y. Jin, M. Zhang, Y. Chen, H. Wu, F. Lai, J. Funct. Foods. 26, 439–450 (2016). https://doi.org/10.1016/j.jff.2016.07.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31901690), and the Scientific Research Foundation of Chengdu University (2081921047).

Author information

Authors and Affiliations

Authors

Contributions

K-LF: data curation; formal analysis; investigation; methodology; writing-original draft. LH: data curation; validation; formal analysis; investigation; writing-original draft. D-TW: conceptualization; funding acquisition; data curation; formal analysis; supervision; writing-review and editing. FL: validation; investigation. R-YG: resources; formal analysis. WQ: formal analysis; supervision; writing-review and editing; LZ: conceptualization; formal analysis; supervision; writing-review and editing.

Corresponding authors

Correspondence to Ding-Tao Wu, Wen Qin or Liang Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, KL., Huang, L., Wu, DT. et al. Physicochemical properties and in vitro bioactivities of polysaccharides from lotus leaves extracted by different techniques and solvents. Food Measure 16, 1583–1594 (2022). https://doi.org/10.1007/s11694-021-01256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01256-3

Keywords

Navigation