Skip to main content
Log in

A Comprehensive Review of Food Waste Dryers and Their Energy Supply Methods

  • Review Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Every year, a large amount of food, including fruits, vegetables, meat, grains, etc., is thrown away for various reasons. There has been a lot of research done recently on food waste recycling technology because of the possibility of utilizing these disposable resources, as well as their high nutritional value for animal feed and the significance of their processing. On the other hand, the significance of waste management has grown daily as a result of restrictions on greenhouse gas emissions, drought, global warming, and other environmental issues. One of the best methods for managing food waste is drying, and the products can be utilized as animal feed. But due to the limitations of the use of electric energy and fossil fuels due to the increasing per capita use of electricity and environmental pollution, attention to other energy sources such as waste heat and renewable energy is of particular importance. This review provides a comprehensive report on the amount of food waste per person per year in different countries. It also explains the results of various research projects about the moisture conditions of food waste. This review provides valuable information about dryer technology used in domestic, semi-industrial, and large-scale applications. Also, different design parameters of food waste dryers have been investigated in further studies. This review provides important information regarding improving new technical approaches for use in food waste dryers. It also provides valuable information to increase the potential of using renewable energy. Next-generation food waste dryers should be widely investigated to offer new solutions by using new mechanisms, renewable energy, and combining different drying methods to optimize drying temperature and time.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

A :

Area (m2)

\(C\) :

Annual cost of dryer

\(D\) :

Days when dryers are in use each year

\({D}_{b}\) :

Crop drying time, by batch (days)

\(DR\) :

Drying rate (kg/w)

\({E}_{o}\) :

To overall energy supplied to dryer

\({E}_{ev}\) :

Thermal energy

\({E}_{T}\) :

Total energy consumption (kwh)

\(EUR\) :

Energy utilization ratio (kJ/s)

\(h\) :

Enthalpy (kJ/kg)

\({h}_{fg}\) :

Vaporization latent heat (kJ/kg)

\(MR\) :

Moisture ratio (%)

\(M\) :

Moisture content (% drying weight)

\(\dot{m}\) :

Mass flow rate

\({M}_{r}\) :

Moisture removal rate (kg/h)

\({M}_{f}\) :

Mass of fresh product (kg)

\({M}_{y}\) :

The amount of product dried inside the dryer each year

\({m}_{c}\) :

Total mass of crop taken for drying (kg)

\(N\) :

Project lifetime (years)

\(Q\) :

Heat (J)

\(r\) :

Equivalent radius (m)

\(T\) :

Temperature (\(^\circ {\text{C}})\)

\(U\) :

Overall heat loss (w/m2 °C)

\({X}_{T}\) :

Exergy input to the dryer (w)

\(Y\) :

Annual capacity of energy parameters (kwh/year)

\(\upeta\) :

Efficiency (%)

\(\varphi\) :

Air relative humidity

\({\psi }_{ex}\) :

Exergy efficiency (%)

\(\omega\) :

Humidity ratio (kg waster/kg dry air)

\(a\) :

Air

\(b\) :

Back or biomass

\(bd\) :

Bone dried

\(dp\) :

Dried product

\(e\) :

Equilibrium

\(evp\) :

Evaporation

\(f\) :

Final or fuel

\(hdb\) :

Hybrid dryer body

\(i\) :

Initial

\(in\) :

Inlet

\(ina\) :

Inlet air

\(o\) :

Initial or reference state

\(out\) :

Outlet

\(outa\) :

Outlet air

\(p\) :

Pressure

\(r\) :

Radiation

\(t\) :

Time or top

\(\Delta t\) :

Time changes from t1 to t2

References

  1. Fattibene, D., Recanati, F., Dembska, K., Antonelli, M.: Urban food waste: A framework to analyse policies and initiatives. Resour. 9(9), 99 (2020). https://doi.org/10.3390/RESOURCES9090099

    Article  Google Scholar 

  2. Shahzad, M.W., Burhan, M., Ang, L., Ng, K.C.: Energy-water-environment nexus underpinning future desalination sustainability. Desalination (2017). https://doi.org/10.1016/j.desal.2017.03.009

    Article  Google Scholar 

  3. FAO.: FAO, Food Wastage Footprint. Impacts on Natural Resources. Summary Report. (2013)

  4. Lins, M., Puppin Zandonadi, R., Raposo, A., Ginani, V.C.: Food waste on foodservice: an overview through the perspective of sustainable dimensions. Foods (2021). https://doi.org/10.3390/foods10061175

  5. Mak, T.M.W., Xiong, X., Tsang, D.C.W., Yu, I.K.M., Poon, C.S.: Sustainable food waste management towards circular bioeconomy: policy review, limitations and opportunities. Biores. Technol. (2020). https://doi.org/10.1016/j.biortech.2019.122497

    Article  Google Scholar 

  6. Mahmood, A., Iguchi, R., Kataoka, R.: Multifunctional food waste fertilizer having the capability of Fusarium-growth inhibition and phosphate solubility: A new horizon of food waste recycle using microorganisms. Waste Manag. (2019). https://doi.org/10.1016/j.wasman.2019.05.046

    Article  PubMed  Google Scholar 

  7. Joshi, P., Visvanathan, C.: Sustainable management practices of food waste in Asia: Technological and policy drivers. J. Environ. Manag. (2019). https://doi.org/10.1016/j.jenvman.2019.06.079

    Article  Google Scholar 

  8. Xiao, J.X., Siu, K.W.M.: Challenges in food waste recycling in high-rise buildings and public design for sustainability: A case in Hong Kong. Resour. Conserv. Recycl. (2018). https://doi.org/10.1016/j.resconrec.2018.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  9. Georganas, A., et al.: Bioactive compounds in food waste: a review on the transformation of food waste to animal feed. Foods (2020). https://doi.org/10.3390/foods9030291

  10. Srinivasan, G., Muthukumar, P.: A review on solar greenhouse dryer: design, thermal modelling, energy, economic and environmental aspects. Sol. Energy (2021). https://doi.org/10.1016/j.solener.2021.04.058

    Article  Google Scholar 

  11. García, A.J., Esteban, M.B., Márquez, M.C., Ramos, P.: Biodegradable municipal solid waste: characterization and potential use as animal feedstuffs. Waste Manag. (2005). https://doi.org/10.1016/j.wasman.2005.01.006

    Article  PubMed  Google Scholar 

  12. Gu, B., et al.: Characterization, quantification and management of China’s municipal solid waste in spatiotemporal distributions: a review. Waste Manag. (2017). https://doi.org/10.1016/j.wasman.2016.11.039

    Article  PubMed  Google Scholar 

  13. Deymi-Dashtebayaz, M., Arabkoohsar, A., Darabian, F.: Energy and exergy analysis of fluidised bed citric acid dryers. Int. J. Exergy (2017). https://doi.org/10.1504/IJEX.2017.083169

    Article  Google Scholar 

  14. Mujumdar, A.S.: Handbook of industrial drying, 4th edn. CRC Press, Baco Raton (2014)

    Book  Google Scholar 

  15. Visavale, G.L. Principles , Classification and selection of solar dryers. Solar drying: Funda- mentals, Appl. Innov. 2014.

  16. Maloney, J.O. PERRY Chemical engineering handbook, Perrys chemical engineers handbook. (2007)

  17. Rahmani, M., Azadbakht, M., Dastar, B., Esmaeilzadeh, E.: Design and fabrication of a food waste dryer. Biomass Convers. Biorefin. (2021). https://doi.org/10.1007/s13399-021-01639-y

    Article  Google Scholar 

  18. Qu, H., Masud, M.H., Islam, M., Khan, M.I.H., Ananno, A.A., Karim, A.: Sustainable food drying technologies based on renewable energy sources. Crit. Rev. Food Sci. Nutr. (2022). https://doi.org/10.1080/10408398.2021.1907529

    Article  PubMed  Google Scholar 

  19. Jiang, H., Zhang, M., Fang, Z., Mujumdar, A.S., Xu, B.: Effect of different dielectric drying methods on the physic-chemical properties of a starch-water model system. Food Hydrocoll. (2016). https://doi.org/10.1016/j.foodhyd.2015.06.021

    Article  Google Scholar 

  20. Kuhe, A., Ibrahim, J.S., Tuleun, L.T., Akanji, S.A.: Effect of air mass flow rate on the performance of a mixed-mode active solar crop dryer with a transpired air heater. Int. J. Ambient Energy 43(1), 531–538 (2022)

    Article  CAS  Google Scholar 

  21. Lingayat, A.B., Chandramohan, V.P., Raju, V.R.K., Meda, V.: A review on indirect type solar dryers for agricultural crops—Dryer setup, its performance, energy storage and important highlights. Appl. Energy 258, 114005 (2020)

    Article  Google Scholar 

  22. Song, D.B., Lim, K.H., Jung, D.H.: Developing heated air dryer for food waste using steam generated from incineration plant. J. Biosyst. Eng. (2019). https://doi.org/10.1007/s42853-019-00021-1

    Article  Google Scholar 

  23. Selimefendigil, F., Şirin, C., Öztop, H.F.: Improving the performance of an active greenhouse dryer by integrating a solar absorber north wall coated with graphene nanoplatelet-embedded black paint. Sol. Energy 231, 140–148 (2022). https://doi.org/10.1016/J.SOLENER.2021.10.082

    Article  ADS  CAS  Google Scholar 

  24. Baker, C.G.J.: Energy efficient dryer operation—An update on developments. Dry. Technol. (2005). https://doi.org/10.1080/07373930500210556

    Article  Google Scholar 

  25. ELMesery, H.S., ELSeesy, A.I., Zicheng, Hu., Li, Y.: Recent developments in solar drying technology of food and agricultural products: A review. Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2021.112070

    Article  Google Scholar 

  26. Helvaci, H.U., Menon, A., Aydemir, L.Y., Korel, F., Akkurt, G.G.: Drying of olive leaves in a geothermal dryer and determination of quality parameters of dried product. Energy Procedia (2019). https://doi.org/10.1016/j.egypro.2019.02.065

    Article  Google Scholar 

  27. Anand, S., Mishra, D.P., Sarangi, S.K.: CFD supported performance analysis of an innovative biomass dryer. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.06.039

    Article  Google Scholar 

  28. Ortiz-Rodríguez, N.M., Condorí, M., Durán, G., García-Valladares, O.: Solar drying Technologies: A review and future research directions with a focus on agroindustrial applications in medium and large scale. Appl. Therm. Eng. 215, 118993 (2022)

    Article  Google Scholar 

  29. Jobair, H.K., Nima, M.A.: The indirect solar dryers with innovative solar air heaters designs: a review article. Heat Trans. 52(3), 2400 (2022)

    Article  Google Scholar 

  30. Mugi, V.R., Das, P., Balijepalli, R., Chandramohan, V.P.: A review of natural energy storage materials used in solar dryers for food drying applications. J. Energy Storage 49, 104198 (2022)

    Article  Google Scholar 

  31. Elavarasan, E., Natarajan, S.K., Bhanu, A.S., Anandu, A., Senin, M.H.: Experimental investigation of drying cucumber in a double slope solar dryer under natural convection and open sun drying. Innov. Energy, Power Therm. Eng. (2022). https://doi.org/10.1007/978-981-16-4489-4_5

    Article  Google Scholar 

  32. Gilago, M.C., Chandramohan, V.P.: Performance parameters evaluation and comparison of passive and active indirect type solar dryers supported by phase change material during drying ivy gourd. Energy 252, 123998 (2022). https://doi.org/10.1016/J.ENERGY.2022.123998

    Article  Google Scholar 

  33. Maiti, S., Patel, P., Vyas, K., Eswaran, K., Ghosh, P.K.: Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India. Sol. Energy (2011). https://doi.org/10.1016/j.solener.2011.08.007

    Article  Google Scholar 

  34. Ezeike, G.O.I.: Development and performance of a triple-pass solar collector and dryer system. Energy Agric. (1986). https://doi.org/10.1016/0167-5826(86)90002-1

    Article  Google Scholar 

  35. Lingayat, A.B., Chandramohan, V.P., Raju, V.R.K., Meda, V.: A review on indirect type solar dryers for agricultural crops–Dryer setup, its performance, energy storage and important highlights. Appl. Energy (2020). https://doi.org/10.1016/j.apenergy.2019.114005

    Article  Google Scholar 

  36. Bal, L.M., Satya, S., Naik, S.N.: Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew. Sustain. Energy Rev. (2010). https://doi.org/10.1016/j.rser.2010.04.014

    Article  Google Scholar 

  37. MadadiAvargani, V., Zendehboudi, S., Rahimi, A., Soltani, S.: Comprehensive energy, exergy, enviro-exergy, and thermo-hydraulic performance assessment of a flat plate solar air heater with different obstacles. Appl. Therm. Eng. (2022). https://doi.org/10.1016/j.applthermaleng.2021.117907

    Article  Google Scholar 

  38. Lee, S., Tsang, Y.F., Lin, K.Y.A., Kwon, E.E., Lee, J.: Employment of biogas as pyrolysis medium and chemical feedstock. J. CO2 Util. 57, 101877 (2022). https://doi.org/10.1016/J.JCOU.2021.101877

    Article  CAS  Google Scholar 

  39. Yahya, M., Herrmann, C., Ismaili, S., Jost, C., Truppel, I., Ghorbal, A.: Kinetic studies for hydrogen and methane co-production from food wastes using multiple models. Biomass Bioenergy 161, 106449 (2022). https://doi.org/10.1016/J.BIOMBIOE.2022.106449

    Article  CAS  Google Scholar 

  40. Chakraborty, D., Karthikeyan, O.P., Selvam, A., Palani, S.G., Ghangrekar, M.M., Wong, J.W.C.: Two-phase anaerobic digestion of food waste: effect of semi-continuous feeding on acidogenesis and methane production. Bioresour. Technol. 346, 126396 (2022). https://doi.org/10.1016/J.BIORTECH.2021.126396

    Article  CAS  PubMed  Google Scholar 

  41. Theppitak, S., Hungwe, D., Ding, L., Xin, D., Yu, G., Yoshikawa, K.: Comparison on solid biofuel production from wet and dry carbonization processes of food wastes. Appl. Energy 272, 115264 (2020). https://doi.org/10.1016/J.APENERGY.2020.115264

    Article  CAS  Google Scholar 

  42. Rahmani, M., Azadbakht, M., Dastar, B., Esmaeilzadeh, E.: Production of animal feed from food waste or corn? Analyses of energy and exergy. Bioresour. Technol. Rep. 20, 101213 (2022). https://doi.org/10.1016/J.BITEB.2022.101213

    Article  CAS  Google Scholar 

  43. European Commission and T. Report: Preparatory study on food waste across Eu 27, vol. 33. (2010)

  44. Lebersorger, S., Schneider, F.: Discussion on the methodology for determining food waste in household waste composition studies. Waste Manag. 31(9–10), 1924–1933 (2011). https://doi.org/10.1016/J.WASMAN.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  45. Nakaishi, T., Takayabu, H.: Production efficiency of animal feed obtained from food waste in Japan. Environ. Sci. Pollut. Res. 29, 61187–61203 (2022)

    Article  Google Scholar 

  46. FAO: Food wastage footprint, impacts on natural resources, Rome. (2013)

  47. FAO: Food loss and food waste (2016)

  48. EPA: United States 2030 Food loss and waste reduction goal EPA: Sustainable Management of Food

  49. USEPA: Terms of Environment: Glossary, Abbreviations and Acronyms (Glossary F), United States Environmental Protection Agency. (2006)

  50. FUSIONS: Definitional framework for food waste—full report. (2014)

  51. WRAP: Household food and drink waste in the United Kingdom 2012. (2012)

  52. Buzby, J.C., Hyman, J., Stewart, H., Wells, H.F.: The value of retail- and consumer-level fruit and vegetable losses in the United States. J. Consum. Aff. (2011). https://doi.org/10.1111/j.1745-6606.2011.01214.x

    Article  Google Scholar 

  53. Bellemare, M.F., Çakir, M., Peterson, H.H., Novak, L., Rudi, J.: On the measurement of food waste. Am. J. Agric. Econ. 99(5), 1148 (2017)

    Article  Google Scholar 

  54. Ahmad, A., et al.: A comprehensive state-of-the-art review on the recent developments in greenhouse drying. Energies (Basel) 15(24), 9493 (2022)

    Article  CAS  Google Scholar 

  55. worldpopulationreview: Food waste by country. https://worldpopulationreview.com/

  56. Filimonau, V., Ermolaev, V.A.: A sleeping giant? Food waste in the foodservice sector of Russia. J. Clean. Prod. 297, 126705 (2021). https://doi.org/10.1016/J.JCLEPRO.2021.126705

    Article  Google Scholar 

  57. LopezBarrera, E., Hertel, T.: Global food waste across the income spectrum: Implications for food prices, production and resource use. Food Policy 98, 101874 (2021). https://doi.org/10.1016/J.FOODPOL.2020.101874

    Article  Google Scholar 

  58. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybeck, A.: Global food losses and food waste: extent, causes and prevention, Int. Congr.: Save Food. (2011)

  59. Seadon, J., Modak, P., Periathamby, A.: Asia waste management outlook. (2017)

  60. Commission for Environmental Cooperation: Characterization and management of food loss and waste in north America, vol. 66, (2017)

  61. Mattsson, L., Williams, H., Berghel, J.: Waste of fresh fruit and vegetables at retailers in Sweden—measuring and calculation of mass, economic cost and climate impact. Resour. Conserv. Recycl. 130, 118–126 (2018). https://doi.org/10.1016/J.RESCONREC.2017.10.037

    Article  Google Scholar 

  62. The Guardian: Food waste report shows UK families throw away 24 meals a month, https://www.theguardian.com/ (2013)

  63. The Guardian: UK throwing away £13bn of food each year, latest figures show, https://www.theguardian.com/ (2017)

  64. Eric Bridgwater and Tom Quested: Synthesis of household food waste compositional data 2018. (2020)

  65. FAO: Food wastage footprint: Impacts on natural resources. (2013)

  66. Bogart, J.: https://blog.kett.com/bid/362219/moisture-content-vs-water-activity-use-both-to-optimize-food-safety-and-quality (2018)

  67. Popkin, B.M., D’Anci, K.E., Rosenberg, I.H.: Water, hydration, and health. Nutr. Rev. (2010). https://doi.org/10.1111/j.1753-4887.2010.00304.x

    Article  PubMed  Google Scholar 

  68. Jain, M.S., Daga, M., Kalamdhad, A.S.: Variation in the key indicators during composting of municipal solid organic wastes. Sustain. Environ. Res. (2019). https://doi.org/10.1186/s42834-019-0012-9

    Article  Google Scholar 

  69. Ortiz-Rodríguez, N.M., Condorí, M., Durán, G., García-Valladares, O.: Solar drying Technologies: A review and future research directions with a focus on agroindustrial applications in medium and large scale. Appl. Therm. Eng. 215, 118993 (2022). https://doi.org/10.1016/J.APPLTHERMALENG.2022.118993

    Article  Google Scholar 

  70. Gaikwad, P.S., Sunil, C.K., Negi, A., Pare, A.: Effect of microwave assisted hot-air drying temperatures on drying kinetics of dried black gram papad (Indian snack food): drying characteristics of black gram papad. Appl. Food Res. 2(2), 100144 (2022). https://doi.org/10.1016/J.AFRES.2022.100144

    Article  Google Scholar 

  71. Bhatta, S., Janezic, T.S., Ratti, C.: Freeze-drying of plant-based foods. Foods (2020). https://doi.org/10.3390/foods9010087

  72. Wanga, D., Zhang, M., Ronghua, Ju., Mujumdare, A.S., Dongxing, Yu.: Novel drying techniques for controlling microbial contamination in fresh food: a review. Dry. Technol. 41(2), 172–189 (2023)

    Article  Google Scholar 

  73. Samborska, K., et al.: Innovations in spray drying process for food and pharma industries. J. Food Eng. (2022). https://doi.org/10.1016/j.jfoodeng.2022.110960

    Article  Google Scholar 

  74. Karami, H., Kaveh, M., Mirzaee-Ghaleh, E., Taghinezhad, E.: Using PSO and GWO techniques for prediction some drying properties of tarragon (Artemisia dracunculus L.). J. Food Process Eng (2018). https://doi.org/10.1111/jfpe.12921

    Article  Google Scholar 

  75. Dincer, I., Midilli, A., Kucuk, H.: Progress in exergy, energy, and the environment. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04681-5

    Book  Google Scholar 

  76. Genc, S.: Exergetic assessment in dairy industry. Appl. Exergy (2018). https://doi.org/10.5772/intechopen.75028

    Article  Google Scholar 

  77. Karami, H., et al.: Thermodynamic evaluation of the forced convective hybrid-solar dryer during drying process of rosemary (Rosmarinus officinalis L.) leaves. Energies (Basel) (2021). https://doi.org/10.3390/en14185835

    Article  Google Scholar 

  78. Khanali, M., Aghbashlo, M., Rafiee, S., Jafari, A.: Exergetic performance assessment of plug flow fluidised bed drying process of rough rice. Int. J. Exergy (2013). https://doi.org/10.1504/IJEX.2013.057357

    Article  Google Scholar 

  79. Dincer, I., Rosen, M.A.: Exergy: Energy, Environment and Sustainable Development. Elsevier, Boca Raton (2020). https://doi.org/10.1016/B978-0-12-824372-5.09986-3

    Book  Google Scholar 

  80. Nielsen, S.N.: Sustainable Development Indicators: An exergy-Based Approach. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  81. Rezvani, Z., Mortezapour, H., Ameri, M., Akhavan, H.-R., Arslan, S.: Energy and exergy analysis of a water bed-infrared dryer coupled with a photovoltaic-thermal collector. Food Process Eng. (2022). https://doi.org/10.1111/jfpe.14058

    Article  Google Scholar 

  82. Ahmadi, A., et al.: Energy, exergy, and techno-economic performance analyses of solar dryers for agro products: a comprehensive review. Sol. Energy (2021). https://doi.org/10.1016/j.solener.2021.09.060

    Article  Google Scholar 

  83. Singh, P., Gaur, M.K.: Environmental and economic analysis of novel hybrid active greenhouse solar dryer with evacuated tube solar collector. Sustain. Energy Technol. Assess. (2021). https://doi.org/10.1016/j.seta.2021.101428

    Article  Google Scholar 

  84. Nogueira, G.D.R., Silva, P.B., Duarte, C.R., Barrozo, M.A.S.: Analysis of a hybrid packed bed dryer assisted by infrared radiation for processing acerola (Malpighia emarginata D.C.) residue. Food Bioprod. Process. (2019). https://doi.org/10.1016/j.fbp.2019.01.007

    Article  Google Scholar 

  85. Murugavelh, S., Anand, B., Midhun Prasad, K., Nagarajan, R., Azariah Pravin Kumar, S.: Exergy analysis and kinetic study of tomato waste drying in a mixed mode solar tunnel dryer. Energy Sour. Part A: Recovery Util. Environ. Effects (2019). https://doi.org/10.1080/15567036.2019.1679289

    Article  Google Scholar 

  86. Bala, B.K., Mondol, M.R.A.: Experimental investigation on solar drying of fish using solar tunnel dryer. Dry. Technol. (2001). https://doi.org/10.1081/DRT-100102915

    Article  Google Scholar 

  87. Kim, S.W., Koo, B.S., Lee, D.H.: A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour. Technol. (2014). https://doi.org/10.1016/j.biortech.2014.03.136

    Article  PubMed  Google Scholar 

  88. Adnouni, M., Jiang, L., Zhang, X.J., Zhang, L.Z., Pathare, P.B., Roskilly, A.P.: Computational modelling for decarbonised drying of agricultural products: Sustainable processes, energy efficiency, and quality improvement. Food Engineering 338, 111247 (2022)

    Article  Google Scholar 

  89. Ai, Z., Mowafy, S., Liu, Y.: Comparative analyses of five drying techniques on drying attributes, physicochemical aspects, and flavor components of Amomum villosum fruits. LWT (2022). https://doi.org/10.1016/j.lwt.2021.112879

    Article  Google Scholar 

  90. Liu, Z.L., et al.: Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD). Innov. Food Sci. Emerg. Technol. (2022). https://doi.org/10.1016/j.ifset.2022.102948

    Article  Google Scholar 

  91. Qiu, L., Zhang, M., Tang, J., Adhikari, B., Cao, P.: Innovative technologies for producing and preserving intermediate moisture foods: a review. Food Res. Int. (2019). https://doi.org/10.1016/j.foodres.2018.12.055

    Article  PubMed  Google Scholar 

  92. Wang, H., et al.: Vacuum-steam pulsed blanching (VSPB) enhances drying quality, shortens the drying time of gingers by inactivating enzymes, altering texture, microstructure and ultrastructure. LWT (2022). https://doi.org/10.1016/j.lwt.2021.112714

    Article  Google Scholar 

  93. Delfiya, D.S.A., Prashob, K., Murali, S., Alfiya, P.V., Samuel, M.P., Pandiselvam, R.: Drying kinetics of food materials in infrared radiation drying: a review. J. Food Process Eng (2022). https://doi.org/10.1111/jfpe.13810

    Article  Google Scholar 

  94. El-Mesery, H.S.: Improving the thermal efficiency and energy consumption of convective dryer using various energy sources for tomato drying. Alex. Eng. J. (2022). https://doi.org/10.1016/j.aej.2022.03.076

    Article  Google Scholar 

  95. Kim, C.G.: A study on the food waste feeding technology by the far- infrared drying process. J. Korea Org. Waste Resour. Recycl. Assoc. 9(2), 21–27 (2001)

    Google Scholar 

  96. Lee, Y.W.: Remaining food drying feeding technology. J. Korea Org. Waste Resour. Recycl. Assoc. 9(2), 28–35 (2001)

    Google Scholar 

  97. Lee, K.Y.: The present situation and prospects of feeding technology for food waste. J. Korea Org. Waste Resour. Recycl. Assoc. 9(2), 7–15 (2001)

    Google Scholar 

  98. Kim, S.H. Shin, B.S. Hwang, B.R.: Operating conditions of vacuum dryer-treatment of food waste, Proceedings of the KSAM 1999 Winter Conference, pp. 390–398, (1999)

  99. Song, D.-B., Lim, K.-H., Jung, D.-H., Yoon, J.-H.: Drying characteristics and energy analysis of food waste dryer using steam from incineration plant. Agric. Life Sci. (2020). https://doi.org/10.14397/jals.2020.54.3.105

    Article  Google Scholar 

  100. Song, D.-B., Lim, K.-H., Jung, D.-H.: Development of heated-air dryer for agricultural waste using waste heat of incineration plant. Agric. Life Sci. (2019). https://doi.org/10.14397/jals.2019.53.5.137

    Article  Google Scholar 

  101. Song, D.-B., Lim, K.-H., Jung, D.-H.: Development of a torrefaction unit for food and agricultural wastes. Agric. Life Sci. (2018). https://doi.org/10.14397/jals.2018.52.6.73

    Article  Google Scholar 

  102. Song, D.-B., Lim, K.-H., Jung, D.-H.: Development of heated-air drying unit of agricultural wastes. Agric. Life Sci. (2018). https://doi.org/10.14397/jals.2018.52.4.121

    Article  Google Scholar 

  103. Jang, S.H., Choi, S.H., Jung, B.G.: Drying characteristics and energy cost analysis for microwave treatment of food waste. J. Korea Solid Waste Eng. Soc. 24, 23–28 (2007)

    Google Scholar 

  104. Jamil, F., Arshad, R., Ali, M.A.: Design, fabrication and evaluation of rotary hot-air dryer for the value addition of fruit waste. Earth Sci. Pak. (2018). https://doi.org/10.26480/esp.02.2018.07.11

    Article  Google Scholar 

  105. Kim, B.-S., Kang, C.-N., Jeong, J.-H.: A study on a high efficiency dryer for food waste. J. Power Syst. 18(6), 153–158 (2014)

    Article  Google Scholar 

  106. Ahmadi, A.K., Rostapour, O., Barqaei, A.M.: design and construction of a cabinet dryer for drying food waste and evaluation of kinetics and energy consumption. Agric. Mach. 12(4), 467–480 (2022)

    Google Scholar 

  107. Bazregari, M.J., Norouzi, N.: A parametric exergy and energy analysis of the municipal solid waste dryer system: with a comparative-analytic approach toward recent experimental methods. Clean Eng. Technol. (2022). https://doi.org/10.1016/j.clet.2021.100389

    Article  Google Scholar 

  108. Lee, J., Choi, J., Choi, S.: Practical alternative drying process for foodwaste treatment based on comparison of operation cost and greenhouse gas emissions. J. Korea Soc. Waste Manag. (2018). https://doi.org/10.9786/kswm.2018.35.5.432

    Article  Google Scholar 

  109. Abeliotis, K., Chroni, C., Lasaridi, K., Terzis, E., Galliou, F., Manios, T.: Environmental impact assessment of a solar drying unit for the transformation of food waste into animal feed. Resources 11(12), 117 (2022)

    Article  Google Scholar 

  110. Mugi, V.R., Chandramohan, V.P.: Comparison of drying kinetics, thermal and performance parameters during drying guava slices in natural and forced convection indirect solar dryers. Sol. Energy (2022). https://doi.org/10.1016/j.solener.2022.02.012

    Article  Google Scholar 

  111. Zimmer, T., Rudi, A., Glöser-Chahoud, S., Schultmann, F.: Techno-economic analysis of intermediate pyrolysis with solar drying: a chilean case study. Energies (Basel) (2022). https://doi.org/10.3390/en15062272

    Article  Google Scholar 

  112. Özbek, H.N., et al.: Sequential-combined solar energy assisted hot air and hot air-assisted radio frequency drying to produce high-quality dried whole apricots: an optimization study for process parameters. J. Food Process. Preserv. (2022). https://doi.org/10.1111/jfpp.16344

    Article  Google Scholar 

  113. Nijmeh, M.N., Ragab, A.S., Emeish, M.S., Jubran, B.A.: Design and testing of solar dryers for processing food wastes. Appl. Therm. Eng. (1998). https://doi.org/10.1016/S1359-4311(98)00002-7

    Article  Google Scholar 

  114. Noori, A.W., Royen, M.J., Medveďová, A., Haydary, J.: Drying of food waste for potential use as animal feed. Sustainability 14(10), 5849 (2022)

    Article  CAS  Google Scholar 

  115. DRYWASTE: Development and demonstration of an innovative household dryer for the treatment of organic waste. Eur. Comm. (2012)

  116. Sotiropoulos, A., Malamis, D., Loizidou, M.: Dehydration of domestic food waste at source as an alternative approach for food waste management. Waste Biomass Valoriz. (2015). https://doi.org/10.1007/s12649-014-9343-2

    Article  Google Scholar 

  117. Kilic, A.: Low temperature and high velocity (LTHV) application in drying: characteristics and effects on the fish quality. J. Food Eng. (2009). https://doi.org/10.1016/j.jfoodeng.2008.08.023

    Article  Google Scholar 

  118. Aktaş, M., Khanlari, A., Amini, A., Şevik, S.: Performance analysis of heat pump and infrared–heat pump drying of grated carrot using energy-exergy methodology. Energy Convers. Manag. (2017). https://doi.org/10.1016/j.enconman.2016.11.027

    Article  Google Scholar 

  119. Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., Khoshtaghaza, M.H.: Comparison of energy parameters in various dryers. Energy Convers. Manag. (2014). https://doi.org/10.1016/j.enconman.2014.07.012

    Article  Google Scholar 

  120. Vongpradubchai, S., Rattanadecho, P.: The microwave processing of wood using a continuous microwave belt drier. Chem. Eng. Process. (2009). https://doi.org/10.1016/j.cep.2009.01.008

    Article  Google Scholar 

  121. Soysal, Y., Öztekin, S., Eren, Ö.: Microwave drying of parsley: modelling, kinetics, and energy aspects. Biosyst. Eng. (2006). https://doi.org/10.1016/j.biosystemseng.2006.01.017

    Article  Google Scholar 

  122. McMinn, W.A.M.: Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J. Food Eng. (2006). https://doi.org/10.1016/j.jfoodeng.2004.11.025

    Article  Google Scholar 

  123. Mousa, N., Farid, M.: Microwave vacuum drying of banana slices. Dry. Technol. (2002). https://doi.org/10.1081/DRT-120015584

    Article  Google Scholar 

  124. Feng, H., Tang, J., Cavalieri, R.P., Plumb, O.A.: Heat and mass transport in microwave drying of porous materials in a spouted bed. AIChE J. (2001). https://doi.org/10.1002/aic.690470704

    Article  Google Scholar 

  125. Ndukwu, M.C., Onyenwigwe, D., Abam, F.I., Eke, A.B., Dirioha, C.: Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.03.016

    Article  Google Scholar 

  126. Singh, A., Sarkar, J., Sahoo, R.R.: Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.04.100

    Article  Google Scholar 

  127. El Khadraoui, A., Kooli, S., Hamdi, I., Farhat, A.: Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew. Energy (2015). https://doi.org/10.1016/j.renene.2014.11.090

    Article  Google Scholar 

  128. El Khadraoui, A., Hamdi, I., Kooli, S., Guizani, A.: Drying of red pepper slices in a solar greenhouse dryer and under open sun: experimental and mathematical investigations. Innov. Food Sci. Emerg. Technol. (2019). https://doi.org/10.1016/j.ifset.2019.01.001

    Article  Google Scholar 

  129. Boughali, S., Benmoussa, H., Bouchekima, B., Mennouche, D., Bouguettaia, H., Bechki, D.: Crop drying by indirect active hybrid solar—Electrical dryer in the eastern Algerian Septentrional Sahara. Sol. Energy (2009). https://doi.org/10.1016/j.solener.2009.09.006

    Article  Google Scholar 

  130. Banout, J., Ehl, P., Havlik, J., Lojka, B., Polesny, Z., Verner, V.: Design and performance evaluation of a double-pass solar drier for drying of red chilli (Capsicum annum L.). Sol. Energy (2011). https://doi.org/10.1016/j.solener.2010.12.017

    Article  Google Scholar 

  131. Yahya, M., Fahmi, H., Fudholi, A., Sopian, K.: Performance and economic analyses on solar-assisted heat pump fluidised bed dryer integrated with biomass furnace for rice drying. Sol. Energy (2018). https://doi.org/10.1016/j.solener.2018.10.002

    Article  Google Scholar 

  132. Lakshmi, D.V.N., Muthukumar, P., Layek, A., Nayak, P.K.: Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Sol. Energy (2019). https://doi.org/10.1016/j.solener.2019.06.009

    Article  Google Scholar 

  133. Vijayan, S., Arjunan, T.V., Kumar, A.: Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2019.08.066

    Article  Google Scholar 

  134. Kudra, T.: Energy aspects in drying. Drying Technol. (2004). https://doi.org/10.1081/DRT-120038572

    Article  Google Scholar 

  135. Sreekumar, A.: Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables. Energy Convers. Manag. (2010). https://doi.org/10.1016/j.enconman.2010.03.017

    Article  Google Scholar 

  136. Daghigh, R., Shahidian, R., Oramipoor, H.: A multistate investigation of a solar dryer coupled with photovoltaic thermal collector and evacuated tube collector. Sol. Energy (2020). https://doi.org/10.1016/j.solener.2020.02.069

    Article  Google Scholar 

  137. Tiwari, S., Tiwari, G.N.: Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Energy (2016). https://doi.org/10.1016/j.energy.2016.07.132

    Article  Google Scholar 

  138. Jain, D., Tewari, P.: Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renew. Energy (2015). https://doi.org/10.1016/j.renene.2015.02.012

    Article  Google Scholar 

  139. Nabnean, S., Janjai, S., Thepa, S., Sudaprasert, K., Songprakorp, R., Bala, B.K.: Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes. Renew. Energy (2016). https://doi.org/10.1016/j.renene.2016.03.013

    Article  Google Scholar 

  140. Kareem, M.W., Habib, K., Ruslan, M.H., Saha, B.B.: Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa). Renew. Energy (2017). https://doi.org/10.1016/j.renene.2016.12.099

    Article  Google Scholar 

  141. Condorí, M., Duran, G., Echazú, R., Altobelli, F.: Semi-industrial drying of vegetables using an array of large solar air collectors. Energy Sustain. Dev. (2017). https://doi.org/10.1016/j.esd.2016.11.004

    Article  Google Scholar 

  142. Norani, M., Deymi-Dashtebayaz, M.: Energy, exergy and exergoeconomic optimization of a proposed CCHP configuration under two different operating scenarios in a data center: case study. J. Clean. Prod. (2022). https://doi.org/10.1016/j.jclepro.2022.130971

    Article  Google Scholar 

  143. Deymi-Dashtebayaz, M., Norani, M.: Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center. Renew. Sustain. Energy Rev. (2021). https://doi.org/10.1016/j.rser.2021.111511

    Article  Google Scholar 

  144. Song, D.-B., Lim, K.-H.: Dragging characteristics of common water hyacinths (Eichhornia Crassipes). Agric. Life Sci. (2021). https://doi.org/10.14397/jals.2021.55.3.121

    Article  Google Scholar 

  145. Paraschivu, M., Cotuna, O., Matei, G., Sărățeanu, V.: Are food waste and food loss a real threat for food security. Agriculture 22(1), 479 (2022)

    Google Scholar 

  146. Sami, S., Gholizadeh, M., Dadpour, D., Deymi-Dashtebayaz, M.: Design and optimization of a CCHDP system integrated with NZEB from energy, exergy and exergoeconomic perspectives. Energy Convers Manag. 271, 116347 (2022). https://doi.org/10.1016/J.ENCONMAN.2022.116347

    Article  Google Scholar 

Download references

Acknowledgements

This study is obtained due to the state financial support of the Russian federation represented by the Government of the Russian Federation, the Ministry of Education and Science of the Russian Federation and the Customer. This work was financially supported by the Government of the Russian Federation through the ITMO Fellowship and Professorship program.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MD-D, DH, MA, JK and OS. The first draft of the manuscript was written by MD-D and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahdi Deymi-Dashtebayaz.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deymi-Dashtebayaz, M., Hosseinzadeh, D., Asadi, M. et al. A Comprehensive Review of Food Waste Dryers and Their Energy Supply Methods. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-023-02397-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-023-02397-w

Keywords

Navigation