Skip to main content

Advertisement

Log in

Unravelling the Biohydrogen Production Potential from a Co-Digestion Process of Banana Processing Wastewater and Synthetic Sewage by Anaerobic Fermentation: Performance Evaluation and Microbial Community Analysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biohydrogen (bioH2) and soluble metabolites products (SMPs) obtention from the co-digestion process of banana processing wastewater (BPW) and synthetic sewage (SS) were investigated. The reactor performance was evaluated by BPW addition with different initial concentrations: 2.0, 5.0, and 9.6 g of total carbohydrate (TC)/L (pure BPW) using SS to complete the working volume. The dark fermentation process was carried out in a 1 L batch reactor operated at 37 °C/52 h and pH 7. The composition of gas and liquid samples (TC, VFAs, alcohols, and pH) were analyzed during reactor operation. The highest bioH2 production yield (210.82 ± 32.07 NmL/g TC) and bioH2 production rate (40.93 ± 7.60 NmL/g TC/h) were obtained at an initial substrate concentration of 2.0 g TC/L. These results indicated that the co-digestion improved carbohydrate utilization and induced a more effective metabolic pathway to bioH2 production. At this condition, the main soluble metabolite products were acetate and butyrate, whereupon Clostridiacae was the main family involved in BPW fermentation. The prediction of functional gene expression evidenced a shift in the mechanisms of SMPs and bio H2 obtention as the initial concentration of substrate changes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support this paper are available from the corresponding author upon request from readers.

References

  1. Tak, S.S., Shetye, O., Muley, O., Jaiswal, H., Malik, S.N.: Emerging technologies for hydrogen production from wastewater. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/J.IJHYDENE.2022.06.225

    Article  Google Scholar 

  2. Qyyum, M.A., Ihsanullah, I., Ahmad, R., Ismail, S., Khan, A., Nizami, A.S., Tawfik, A.: Biohydrogen production from real industrial wastewater: Potential bioreactors, challenges in commercialization and future directions. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/J.IJHYDENE.2022.01.195

    Article  Google Scholar 

  3. Mei, D., Qiu, X., Liu, H., Wu, Q., Yu, S., Xu, L., Zuo, T., Wang, Y.: Progress on methanol reforming technologies for highly efficient hydrogen production and applications. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/J.IJHYDENE.2022.08.134

    Article  Google Scholar 

  4. Acar, C., Dincer, I.: Review and evaluation of hydrogen production options for better environment. J. Clean Prod. 218, 835–849 (2019). https://doi.org/10.1016/J.JCLEPRO.2019.02.046

    Article  Google Scholar 

  5. Ramprakash, B., Lindblad, P., Eaton-Rye, J.J., Incharoensakdi, A.: Current strategies and future perspectives in biological hydrogen production: a review. Renew. Sustain. Energy Rev. 168, 112773 (2022). https://doi.org/10.1016/J.RSER.2022.112773

    Article  Google Scholar 

  6. Sivaramakrishnan, R., Shanmugam, S., Sekar, M., Mathimani, T., Incharoensakdi, A., Kim, S.H., Parthiban, A., Edwin Geo, V., Brindhadevi, K., Pugazhendhi, A.: Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield. Fuel 291, 120136 (2021). https://doi.org/10.1016/J.FUEL.2021.120136

    Article  Google Scholar 

  7. Aydin, M.I., Karaca, A.E., Qureshy, A.M.M.I., Dincer, I.: A comparative review on clean hydrogen production from wastewaters. J. Environ. Manag. 279, 111793 (2021). https://doi.org/10.1016/J.JENVMAN.2020.111793

    Article  Google Scholar 

  8. Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., Olaniyan, O.: Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum. 44, 40–51 (2020). https://doi.org/10.1111/1477-8947.12187

    Article  Google Scholar 

  9. Caligan, C.J.A., Garcia, M.M.S., Mitra, J.L., San Juan, J.L.G.: Multi-objective optimization for a wastewater treatment plant and sludge-to-energy network. J. Clean Prod. 368, 133047 (2022). https://doi.org/10.1016/J.JCLEPRO.2022.133047

    Article  Google Scholar 

  10. Litti, Y.V., Potekhina, M.A., Zhuravleva, E.A., Vishnyakova, A.V., Gruzdev, D.S., Kovalev, A.A., Kovalev, D.A., Katraeva, I.V., Parshina, S.N.: Dark fermentative hydrogen production from simple sugars and various wastewaters by a newly isolated thermoanaerobacterium thermosaccharolyticum SP-H2. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/J.IJHYDENE.2022.05.235

    Article  Google Scholar 

  11. Policastro, G., Carraturo, F., Compagnone, M., Guida, M., Fabbricino, M.: Enhancing hydrogen production from winery wastewater through fermentative microbial culture selection. Bioresour. Technol. Rep. (2022). https://doi.org/10.1016/j.biteb.2022.101196

    Article  Google Scholar 

  12. Alvarez, A.J., Fuentes, K.L., Arias, A., Chaparro, C.: Production of hydrogen from beverage wastewater by dark fermentation in an internal circulation reactor: effect on pH and hydraulic retention time. Energy Convers. Manag. X. (2022). https://doi.org/10.1016/J.ECMX.2022.100232

    Article  Google Scholar 

  13. Ziara, R.M.M., Miller, D.N., Subbiah, J., Dvorak, B.I.: Lactate wastewater dark fermentation: the effect of temperature and initial pH on biohydrogen production and microbial community. Int. J. Hydrogen Energy 44, 661–673 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.045

    Article  Google Scholar 

  14. Wadjeam, P., Reungsang, A., Imai, T., Plangklang, P.: Co-digestion of cassava starch wastewater with buffalo dung for bio-hydrogen production. Int. J. Hydrogen Energy 44, 14694–14706 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.138

    Article  Google Scholar 

  15. Manhongo, T.T., Chimphango, A.F.A., Thornley, P., Röder, M.: Current status and opportunities for fruit processing waste biorefineries. Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2021.111823

    Article  Google Scholar 

  16. Aurore, G., Parfait, B., Fahrasmane, L.: Bananas, raw materials for making processed food products. Trends Food Sci. Technol. 20, 78–91 (2009). https://doi.org/10.1016/J.TIFS.2008.10.003

    Article  Google Scholar 

  17. Pereira, B.S., de Freitas, C., Vieira, R.M., Brienzo, M.: Brazilian banana, guava, and orange fruit and waste production as a potential biorefinery feedstock. J. Mater. Cycles Waste Manag. 24, 2126–2140 (2022). https://doi.org/10.1007/S10163-022-01495-6/TABLES/3

    Article  Google Scholar 

  18. Rasmeni, Z.Z., Madyira, D.M., Matheri, A.N.: Optimum loading ratio for co-digested wastewater sludge and brewery spent yeast. Energy Rep. 8, 1141–1149 (2022). https://doi.org/10.1016/J.EGYR.2022.06.082

    Article  Google Scholar 

  19. García-Depraect, O., Gómez-Romero, J., León-Becerril, E., López-López, A.: A novel biohydrogen production process: Co-digestion of vinasse and nejayote as complex raw substrates using a robust inoculum. Int. J. Hydrogen Energy 42, 5820–5831 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.204

    Article  Google Scholar 

  20. Yang, G., Hu, Y., Wang, J.: Biohydrogen production from co-fermentation of fallen leaves and sewage sludge. Bioresour. Technol. 285, 121342 (2019). https://doi.org/10.1016/j.biortech.2019.121342

    Article  Google Scholar 

  21. Martín, M.A., de la Rubia, M.A., Martín, A., Borja, R., Montalvo, S., Sánchez, E.: Kinetic evaluation of the psychrophylic anaerobic digestion of synthetic domestic sewage using an upflow filter. Bioresour. Technol. 101, 131–137 (2010). https://doi.org/10.1016/j.biortech.2009.08.010

    Article  Google Scholar 

  22. Wang, J., Wan, W.: Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int. J. Hydrogen Energy 33, 2934–2941 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.048

    Article  Google Scholar 

  23. Aquino, S.F., Chernicharo, C.A.L., De, M., Florêncio, L., Santos, D.: Methodologies for determining the specific methanogenic activity (SMA) in anaerobic sludges. San. Environ. Eng. (2007). https://doi.org/10.1590/S1413-41522007000200010

    Article  Google Scholar 

  24. Herbert, D., Phipps, P.J., Strange, R.E.: Chapter III chemical analysis of microbial cells. Methods Microbiol. 5, 209–344 (1971). https://doi.org/10.1016/S0580-9517(08)70641-X

    Article  Google Scholar 

  25. Maintinguer, S.I., Fernandes, B.S., Duarte, I.C.S., Saavedra, N.K., Adorno, M.A.T., Varesche, M.B.: Fermentative hydrogen production by microbial consortium. Int. J. Hydrogen Energy 33, 4309–4317 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.053

    Article  Google Scholar 

  26. Angela, M., Adorno, T., Hirasawa, J.S., Bernadete, M., Varesche, A.: Development and validation of two methods to quantify volatile acids (C2–C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). Am. J. Analyt Chem. 05, 406–414 (2014). https://doi.org/10.4236/AJAC.2014.57049

    Article  Google Scholar 

  27. Perimenis, A., Nicolay, T., Leclercq, M., Gerin, P.A.: Comparison of the acidogenic and methanogenic potential of agroindustrial residues. Waste Manage 72, 178–185 (2018). https://doi.org/10.1016/J.WASMAN.2017.11.033

    Article  Google Scholar 

  28. APHA: Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C. (2005)

    Google Scholar 

  29. Griffiths, R.I., Whiteley, A.S., O’Donnell, A.G., Bailey, M.J.: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000). https://doi.org/10.1128/AEM.66.12.5488-5491.2000

    Article  Google Scholar 

  30. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P.: DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods 13, 7 (2016). https://doi.org/10.1038/nmeth.3869

    Article  Google Scholar 

  31. McLaren, M.R., Callahan, B.J.: Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2. Zenodo Database (2021). https://doi.org/10.5281/ZENODO.458795

    Article  Google Scholar 

  32. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  Google Scholar 

  33. Wang, J., Wan, W.: Kinetic models for fermentative hydrogen production: a review. Green Energy Technol. (2009). https://doi.org/10.1007/978-981-10-4675-9_6

    Article  Google Scholar 

  34. Fangkum, A., Reungsang, A.: Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: effects of initial pH and substrate concentration. Int. J. Hydrogen Energy 36, 8687–8696 (2011). https://doi.org/10.1016/J.IJHYDENE.2010.05.119

    Article  Google Scholar 

  35. Sivaramakrishna, D., Sreekanth, D., Himabindu, V., Anjaneyulu, Y.: Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora. Renew. Energy 34, 937–940 (2009). https://doi.org/10.1016/J.RENENE.2008.04.016

    Article  Google Scholar 

  36. Fan, Y.T., Zhang, Y.H., Zhang, S.F., Hou, H.W., Ren, B.Z.: Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour. Technol. 97, 500–505 (2006). https://doi.org/10.1016/J.BIORTECH.2005.02.049

    Article  Google Scholar 

  37. Wicher, E., Seifert, K., Zagrodnik, R., Pietrzyk, B., Laniecki, M.: Hydrogen gas production from distillery wastewater by dark fermentation. Int. J. Hydrogen Energy 38, 7767–7773 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.008

    Article  Google Scholar 

  38. Sá, L.R., Cammarota, M.C., Ferreira-Leitão, V.S.: Produção de hidrogênio via fermentação anaeróbia-aspectos gerais e possibilidade de utilização de resíduos agroindustriais brasileiros. Quím. Nova. 37(5), 857–867 (2014). https://doi.org/10.5935/0100-4042.20140138

    Article  Google Scholar 

  39. Lin, C.Y., Lay, C.H., Sen, B., Chu, C.Y., Kumar, G., Chen, C.C., Chang, J.S.: Fermentative hydrogen production from wastewaters: a review and prognosis. Int. J. Hydrogen Energy 37, 15632–15642 (2012). https://doi.org/10.1016/J.IJHYDENE.2012.02.072

    Article  Google Scholar 

  40. Fernandes, B.S., Peixoto, G., Albrecht, F.R., del Saavedra, N.K., Zaiat, M.: Potential to produce biohydrogen from various wastewaters. Energy Sustain. Dev. 14, 143–148 (2010). https://doi.org/10.1016/J.ESD.2010.03.004

    Article  Google Scholar 

  41. García-Depraect, O., Castro-Muñoz, R., Muñoz, R., Rene, E.R., León-Becerril, E., Valdez-Vazquez, I., Kumar, G., Reyes-Alvarado, L.C., Martínez-Mendoza, L.J., Carrillo-Reyes, J., Buitrón, G.: A review on the factors influencing biohydrogen production from lactate: the key to unlocking enhanced dark fermentative processes. Bioresour. Technol. 324, 124595 (2021). https://doi.org/10.1016/J.BIORTECH.2020.124595

    Article  Google Scholar 

  42. Andreani, C.L., Tonello, T.U., Mari, A.G., Leite, L.C.C., Campaña, H.D., Lopes, D.D., Rodrigues, J.A.D., Gomes, S.D.: Impact of operational conditions on development of the hydrogen-producing microbial consortium in an AnSBBR from cassava wastewater rich in lactic acid. Int. J. Hydrogen Energy 44, 1474–1482 (2019). https://doi.org/10.1016/J.IJHYDENE.2018.11.155

    Article  Google Scholar 

  43. Baima Ferreira Freitas, I., Aparecida de Menezes, C., Luiz Silva, E.: An alternative for value aggregation to the sugarcane chain: biohydrogen and volatile fatty acids production from sugarcane molasses in mesophilic expanded granular sludge bed reactors. Fuel 260, 116419 (2020). https://doi.org/10.1016/J.FUEL.2019.116419

    Article  Google Scholar 

  44. Matsumoto, M., Nishimura, Y.: Hydrogen production by fermentation using acetic acid and lactic acid. J. Biosci. Bioeng. 103, 236–241 (2007). https://doi.org/10.1263/JBB.103.236

    Article  Google Scholar 

  45. Kim, T.H., Lee, Y., Chang, K.H., Hwang, S.J.: Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation. Bioresour. Technol. 103, 136–141 (2012). https://doi.org/10.1016/J.BIORTECH.2011.09.093

    Article  Google Scholar 

  46. Fuess, L.T., Ferraz, A.D.N., Machado, C.B., Zaiat, M.: Temporal dynamics and metabolic correlation between lactate-producing and hydrogen-producing bacteria in sugarcane vinasse dark fermentation: the key role of lactate. Bioresour. Technol. 247, 426–433 (2018). https://doi.org/10.1016/J.BIORTECH.2017.09.121

    Article  Google Scholar 

  47. Villa Montoya, A.C., Cristina da Silva Mazareli, R., Delforno, T.P., Centurion, V.B., Sakamoto, I.K., Maia de Oliveira, V., Silva, E.L., Amâncio Varesche, M.B.: Hydrogen, alcohols and volatile fatty acids from the co-digestion of coffee waste (coffee pulp, husk, and processing wastewater) by applying autochthonous microorganisms. Int. J. Hydrogen Energy 44, 21434–21450 (2019). https://doi.org/10.1016/J.IJHYDENE.2019.06.115

    Article  Google Scholar 

  48. Xu, R., Yang, Z.H., Zheng, Y., Zhang, H.B., Liu, J.B., Xiong, W.P., Zhang, Y.R., Ahmad, K.: Depth-resolved microbial community analyses in the anaerobic co-digester of dewatered sewage sludge with food waste. Bioresour. Technol. 244, 824–835 (2017). https://doi.org/10.1016/J.BIORTECH.2017.07.056

    Article  Google Scholar 

  49. Yang, G., Wang, J.: Changes in microbial community structure during dark fermentative hydrogen production. Int. J. Hydrogen Energy 44, 25542–25550 (2019). https://doi.org/10.1016/J.IJHYDENE.2019.08.039

    Article  Google Scholar 

  50. Yang, G., Wang, J.: Biohydrogen production by co-fermentation of antibiotic fermentation residue and fallen leaves: insights into the microbial community and functional genes. Bioresour. Technol. 337, 125380 (2021). https://doi.org/10.1016/J.BIORTECH.2021.125380

    Article  Google Scholar 

  51. Hallenbeck, P.C.: Fermentative hydrogen production: principles, progress, and prognosis. Int. J. Hydrogen Energy 34, 7379–7389 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.080

    Article  Google Scholar 

  52. Yin, Y., Wang, J.: Predictive functional profiling of microbial communities in fermentative hydrogen production system using PICRUSt. Int. J. Hydrogen Energy 46, 3716–3725 (2021). https://doi.org/10.1016/J.IJHYDENE.2020.10.246

    Article  Google Scholar 

  53. Hallenbeck, P.C.: Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52, 21–29 (2005)

    Article  Google Scholar 

Download references

Funding

The financial assistance was provided by São Paulo Research Foundation (FAPESP), Grant No. 2020/15155-3.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CCCF, as well as the written of the first draft of the manuscript. CF performed the High-Performance Liquid Chromatography analysis. DFCM contributed to the experimental outline and discussion. SIM and MB made funding acquisition, advising and discussion. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cintia Cristina da Costa Freire.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 119.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Freire, C.C., Marin, D.F.C., da Silva Mazareli, R.C. et al. Unravelling the Biohydrogen Production Potential from a Co-Digestion Process of Banana Processing Wastewater and Synthetic Sewage by Anaerobic Fermentation: Performance Evaluation and Microbial Community Analysis. Waste Biomass Valor 15, 1587–1601 (2024). https://doi.org/10.1007/s12649-023-02258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02258-6

Keywords

Navigation