Skip to main content

Kinetic Models for Hydrogen Production

  • Chapter
  • First Online:
Biohydrogen Production from Organic Wastes

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The kinetic models can be used to describe the progress of fermentative hydrogen production process, to investigate the effects of substrate concentration, inhibitor concentration, temperatures, pH, and dilution rates on the process of fermentative hydrogen production, and to establish the relationship among the substrate degradation rate, the hydrogen-producing bacteria growth rate and the product formation rate. In this chapter, the modified Gompertz model and the Monod model were introduced. The modified Gompertz model was used to describe the progress of a batch fermentative hydrogen production process, while the Monod model was used to describe the effects of substrate concentration on the rates of substrate degradation, hydrogen-producing bacteria growth and hydrogen production. Arrhenius model was used to describe the effects of temperature on fermentative hydrogen production, while the modified Han–Levenspiel model was used to describe the effects of inhibitor concentration on fermentative hydrogen production. The Andrew model was used to describe the effects of H+ concentration on the specific hydrogen production rate, while the Leudeking–Piret model and its modified form were used to describe the relationship between the hydrogen-producing bacteria growth rate and the product formation rate. Finally, some suggestions for future work with these kinetic models were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HPB:

Hydrogen-producing bacteria

H :

Cumulative value

H max :

Maximum cumulative value

R :

Rate

R max :

Maximum rate

λ:

Lag time

t :

Cultivation time

X :

Biomass

X max :

Maximum biomass

X 0 :

Initial biomass

S :

Substrate concentration

S 0 :

Initial substrate concentration

S Crit :

Critical substrate concentration

P :

Product

C :

Inhibitor concentration

C Crit :

Critical inhibitor concentration

Y X/S :

Biomass yield coefficient

Y P/S :

Product yield coefficient

Y P/X :

Growth-associated product yield coefficient

β:

Nongrowth-associated product yield coefficient

k c :

Apparent specific growth rate

K S :

Half-saturation constant

K I :

Inhibition constant

K C :

Constant

k d :

Biomass decay constant

K a :

Constant

K b :

Constant

m :

Constant

n :

Constant

A :

Constant

B :

Constant

I pH :

pH inhibition constant

pH UL :

Higher pH limit

pH LL :

Lower pH limit

pH min :

Minimum pH

pH max :

Maximum pH

T :

Temperature

T min :

Minimum temperature

T opt :

Optimal temperature

T max :

Maximum temperature

E a :

Activation energy

R g :

Ideal gas constant

[H+]:

H+ concentration

D :

Dilution rate

References

  • Boboescu IZ, Ilie M, Gherman VD, Mirel I, Pap B, Negrea A, Kondorosi E, Biro T, Maroti G (2014) Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate. Biotechnol Biofuels 7(1):139

    Article  Google Scholar 

  • Cai ML, Liu JX, Wei YS (2004) Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol 38(11):3195–3202

    Article  Google Scholar 

  • Chang FY, Lin CY (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29(1):33–39

    Article  Google Scholar 

  • Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57(1–2):56–64

    Google Scholar 

  • Chen CC, Lin CY, Lin MC (2002) Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58(2):224–228

    Article  Google Scholar 

  • Chen SD, Sheu DS, Chen WM, Lo YC, Huang TI, Lin CY, Chang JS (2007) Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnol Prog 23(6):1312

    Article  Google Scholar 

  • Chen WH, Chen SY, Khanal SK, Sung S (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrogen Energy 31(15):2170–2178

    Article  Google Scholar 

  • Cheong DY, Hansen CL (2006) Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl Microbiol Biotechnol 72(4):635–643

    Article  Google Scholar 

  • Cheong DY, Hansen CL (2007) Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes. Biores Technol 98(11):2229–2239

    Article  Google Scholar 

  • Chittibabu G, Nath K, Das D (2006) Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem 41(3):682–688

    Article  Google Scholar 

  • Fabiano B, Perego P (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy 27(2):149–156

    Article  Google Scholar 

  • Fang HHP, Li CL, Zhang T (2005) Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31(6):683–692

    Article  Google Scholar 

  • Fang HHP, Yu H (2002) Mesophilic acidification of gelatinaceous wastewater. J Biotechnol 93(2):99–108

    Article  Google Scholar 

  • Ferchichi M, Crabbe E, Gil GH, Hintz W, Almadidy A (2005) Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120(4):402–409

    Article  Google Scholar 

  • Gadhe A, Sonawane SS, Varma MN (2014) Kinetic analysis of biohydrogen production from complex dairy wastewater under optimized condition. Int J Hydrogen Energy 39(3):1306–1314

    Article  Google Scholar 

  • Hang Z, Zeng RJ, Angelidaki I (2008) Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70°C). Biotechnol Bioeng 100(5):1034

    Article  Google Scholar 

  • Hsia SY, Chou YT (2014) Optimization of biohydrogen production with biomechatronics. J Nanomater 1:1–17

    Article  Google Scholar 

  • Khanal SK, Chen WH, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29(11):1123–1131

    Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6):589–593

    Article  Google Scholar 

  • Kumar N, Monga PS, Biswas AK, Das D (2000) Modeling and simulation of clean fuel production by Enterobacter cloacae IIT-BT 08. Int J Hydrogen Energy 25(10):945–952

    Article  Google Scholar 

  • Lay JJ (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74(4):280–287

    Article  Google Scholar 

  • Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33(11):2579–2586

    Article  Google Scholar 

  • Lee KS, Hsu YF, Lo YC, Lin PJ, Lin CY, Chang JS (2008) Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int J Hydrogen Energy 33(5):1565–1572

    Article  Google Scholar 

  • Lee YJ, Miyahara T, Noike T (2001) Effect of iron concentration on hydrogen fermentation. Bioresour Technol 80(3):227–231

    Article  Google Scholar 

  • Li C, Fang HH (2007) Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere 67(4):668–673

    Article  Google Scholar 

  • Lin CY, Chang CC, Hung CH (2008a) Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrogen Energy 33(10):2445–2453

    Article  Google Scholar 

  • Lin CY, Lay CH (2004) Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 29(3):275–281

    Article  Google Scholar 

  • Lin CY, Shei SH (2008) Heavy metal effects on fermentative hydrogen production using natural mixed microflora. Int J Hydrogen Energy 33(2):587–593

    Article  Google Scholar 

  • Lin CY, Wu CC, Hung CH (2008b) Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures. Int J Hydrogen Energy 33(1):43–50

    Article  Google Scholar 

  • Lin PY, Whang LM, Wu YR, Ren WJ, Hsiao CJ, Li SL, Chang JS (2007) Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation. Int J Hydrogen Energy 32(12):1728–1735

    Article  Google Scholar 

  • Liu G, Shen J (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 98(4):251–256

    Article  Google Scholar 

  • Liu XG, Zhu Y, Yang ST (2006) Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 22(5):1265–1275

    Article  Google Scholar 

  • Lo YC, Chen WM, Hung CH, Chen SD, Chang JS (2008) Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Res 42(4–5):827–842

    Article  Google Scholar 

  • Majizat A, Mitsunori Y, Mitsunori W, Michimasa N, Jun’Ichiro M (1997) Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Water Sci Technol 36(6–7):279–286

    Article  Google Scholar 

  • Mu Y, Yu HQ, Wang G (2007) A kinetic approach to anaerobic hydrogen-producing process. Water Res 41(5):1152–1160

    Article  Google Scholar 

  • Mu Y, Zheng XJ, Yu HQ, Zhu RF (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy 31(6):780–785

    Article  Google Scholar 

  • Nath K, Muthukumar M, Kumar A, Das D (2008) Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energy 33(4):1195–1203

    Article  Google Scholar 

  • Niel EWJV, Budde MAW, Haas GGD, Wal FJVD, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27(11–12):1391–1398

    Google Scholar 

  • Ntaikou I, Gavala HN, Kornaros M, Lyberatos G (2008) Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrogen Energy 33(4):1153–1163

    Article  Google Scholar 

  • O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy 33(4):1204–1214

    Article  Google Scholar 

  • Pachapur VL, Sarma SJ, Brar SK, Le Bihan Y, Buelna G, Verma M (2016) Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum. Renewable Energy 95:542–551

    Article  Google Scholar 

  • Song ZX, Li XH, Li WW, Bai YX, Fan YT, Hou HW (2014) Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp FS3. Biores Technol 157:91–97

    Article  Google Scholar 

  • van Niel E, Claassen P, Stams A (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81(3):255–262

    Article  Google Scholar 

  • Wang CH, Lin PJ, Chang JS (2006) Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochem 41(6):1353–1358

    Article  Google Scholar 

  • Wang CH, Lu WB, Chang JS (2007) Feasibility study on fermentative conversion of raw and hydrolyzed starch to hydrogen using anaerobic mixed microflora. Int J Hydrogen Energy 32(16SI):3849–3859

    Article  Google Scholar 

  • Wang JL, Wan W (2008a) Optimization of fermentative hydrogen production process by response surface methodology. Int J Hydrogen Energy 33(23):6976–6984

    Article  Google Scholar 

  • Wang JL, Wan W (2009a) Factors influencing fermentative hydrogen production: A review. Int J Hydrogen Energy 34(2):799–811

    Article  Google Scholar 

  • Wang JL, Wan W (2009b) Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. Int J Hydrogen Energy 34(1):255–261

    Article  Google Scholar 

  • Wang JL, Wei W (2008) The effect of substrate concentration on biohydrogen production by using kinetic models. Sci China Ser B-Chem 51(11):1110–1117

    Article  Google Scholar 

  • Wang JL, Wan W (2009c) Kinetic models for fermentative hydrogen production: A review. Int J Hydrogen Energy 34(8):3313–3323

    Article  Google Scholar 

  • Wang JL, Wei W (2009) Application of desirability function based on neural network for optimizing biohydrogen production process. Int J Hydrogen Energy 34(3):1253–1259

    Article  Google Scholar 

  • Whang L, Hsiao C, Cheng SS (2006) A dual-substrate steady-state model for biological hydrogen production in an anaerobic hydrogen fermentation process. Biotechnol Bioeng 95(3):492–500

    Article  Google Scholar 

  • Wu JH, Lin CY, Choi E, Yun Z (2004) Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci Technol A: J Int Assoc Water Pollution Research 49(5–6):223

    Google Scholar 

  • Yin YN, Wang JL (2015) Biohydrogen production using waste activated sludge disintegrated by gamma irradiation. Appl Energy 155:434–439

    Article  Google Scholar 

  • Yin YN, Wang JL (2016) Optimization of hydrogen production by response surface methodology using Îł-irradiated sludge as inoculum. Energy Fuels 30(5):4096–4103

    Article  Google Scholar 

  • Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenerg 31(4):250–254

    Article  Google Scholar 

  • Zhang T, Liu H, Fang HH (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manage 69(2):149–156

    Article  Google Scholar 

  • Zheng XJ, Yu HQ (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manage 74(1):65–70

    Article  MathSciNet  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Riet KVT (1990) Modeling of the Bacterial Growth Curve. Appl Environ Microbiol 56(6):1875–1881

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, J., Yin, Y. (2017). Kinetic Models for Hydrogen Production. In: Biohydrogen Production from Organic Wastes. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4675-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4675-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4674-2

  • Online ISBN: 978-981-10-4675-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics