Skip to main content

Advertisement

Log in

Comprehensive Treatment Strategy for Banana Inflorescence Bract to Synthesize Biodiesel and Bioethanol Through Fungal Biorefinery

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Banana inflorescence bract (BIB), an agro-waste is sporadically explored for second-generation biofuel production in spite of having considerable holocellulosic composition (cellulose-35.56%, w/w; hemicellulose-22.41%, w/w). In this study, an attempt has been made to utilize this substrate for fermentable sugars (pentose-C5 and hexose-C6) extraction which were employed for the co-production of microbial lipids and ethanol using Rhodosporidium toruloides NCIM 3547 and Saccharomyces cerevisiae respectively. Since, a considerable amount of lignin (8.78%, w/w) is present in BIB, a hybrid pretreatment and carbohydrate hydrolysis through microwave (160 W) assisted mild H2SO4 acid 2.5% (v/v) was adopted. The resultant liquor contains holocellulosic sugars (C5 and C6 sugars), out of which xylose (10.40 ± 0.49 g/L) and glucose (51.48 ± 1.14 g/L). Hence, it was used as the growth medium for R. toruloides to produce lipids i.e., single cell oil (SCO). The maximum lipid content was found to be 44.89 ± 1.25 (%, w/w) containing total saturated fatty acids of 89.07% which justifies its potential application in biodiesel production. On the other hand, the pretreated solid fraction containing cellulose was saccharified using cellulolytic enzyme produced by Aspergillus sp. with saccharification (%) of 69.99 ± 0.30 (%, v/w) and yield of 27.22 ± 0.33 g/L of reducing sugar. This enzymatic hydrolysate was used for ethanol production by Saccharomyces cerevisiae resulting in an ethanol yield of 12.70 ± 0.09 g/L and productivity of 0.132 g/L/h. Based on this outcome, a sustainable route for agro-waste management of BIB was laid by favouring the integrated production of biodiesel and bioethanol towards a biorefinery approach.

Graphical Abstract

Statement of Novelty

Exploration and utilization of an agro-waste, banana inflorescence bract is established as a potent feedstock for the co-production of single cell oil and bioethanol is reported for the first time. Microwave-assisted mild acid pretreatment was performed for effective delignification and hydrolysis of holocellulosic components. The resultant liquid hydrolysate consisting of lignin degradatory compounds, pentose (xylose) and hexose (glucose) sugars was used as a growth medium for producing single cell oil, proving its potential application in biodiesel production. Further, the pretreated solid cellulosic fraction was saccharified using crude cellulolytic enzymes and an enzymatic hydrolysate was used for the production of bioethanol through two different fermentative strategies. This study reveals that banana inflorescence bract could act as suitable biomass towards the biorefinery approach. Its complete utilization paved the way for agro-waste management that is not in existence so far according to the authors’ knowledge

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Orejuela-Escobar, L.M., Landázuri, A.C., Goodell, B.: Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. J. Bioresources Bioprod. 6(2), 83–107 (2021). https://doi.org/10.1016/j.jobab.2021.01.004

    Article  Google Scholar 

  2. The United Nations Sustainable Development Goals, https://www.un.org/sustainabledevelopment/sustainable-consumption-production/. (2015). Accessed 08 December 2022.

  3. Rajak, R.C., Jacob, S., Kim, B.S.: A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review. Sci. Total Environ. 716, 137067 (2020). https://doi.org/10.1016/j.scitotenv.2020.137067

    Article  Google Scholar 

  4. Area for banana production India FY 2014–2021. Statista research department. https://www.statista.com/statistics/874031/india-area-for-bananas-production (2021). Accessed 07 December 2022

  5. Shankar, K., Kulkarni, N.S., Sajjanshetty, Jayalakshmi, S.K., Sreeramulu, K.: Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Ind. Crops Prod. 155, 112809 (2020). https://doi.org/10.1016/j.indcrop.2020.112809

    Article  Google Scholar 

  6. Crane, J.H., Balerdi, C.F.: Banana growing in the Florida home landscape. Florida: Institute of Food and Agricultural Sciences (IFAS), University of Florida https://edis.ifas.ufl.edu/publication/MG040. (2020)

  7. Doran, I., Sen, B., Kaya, Z.: The effects of compost prepared from waste material of banana on the growth, yield and quality properties of banana plants. J. Environ. Biol. 26, 7–12 (2005)

    Google Scholar 

  8. Preethi, P., Balakrishnamurthy, G.: Assessment of banana cultivars for pigment extraction from bracts, its suitability and stability as food colourant. Int. J. Process. Post Harvest Technol. 2(2), 98–101 (2011)

    Google Scholar 

  9. Amutha, K., Sudha, A., Saravanan, D.: Characterization of natural fibers extracted from banana inflorescence bracts. J. Nat. Fibers (2020). https://doi.org/10.1080/15440478.2020.1764437

    Article  Google Scholar 

  10. Fingolo, C.E., Braga, J.M., Vieira, A.C., Moura, M.R., Kaplan, M.A.: The natural impact of banana inflorescences (Musa acuminata) on human nutrition. An. Acad. Bras. Cienc. 84(4), 891–898 (2012). https://doi.org/10.1590/s0001-37652012005000067

    Article  Google Scholar 

  11. Chauhan, S., Sharma, A.K.: Utilization of pectinases for fibre extraction from banana plant’s waste. Int. J. Waste Resour. 4, 162–167 (2014). https://doi.org/10.4172/2252-5211.1000162

    Article  Google Scholar 

  12. Fei, Q., O’Brien, M., Nelson, R., Chen, X., Lowell, A., Dowe, N.: Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol. Biofuels 9, 130 (2016). https://doi.org/10.1186/s13068-016-0542-x

    Article  Google Scholar 

  13. Kitcha, S.: Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia. 9, 274–282 (2011). https://doi.org/10.1016/j.egypro.2011.09.029

    Article  Google Scholar 

  14. Amaretti, A., Raimondi, S., Sala, M., Roncaglia, L., De Lucia, M., Leonardi, A., Rossi, M.: Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb. Cell. Fact. 23, 73 (2010). https://doi.org/10.1186/1475-2859-9-73

    Article  Google Scholar 

  15. Meng, X., Yang, J., Xin., X., Zhang, L., Nie, Q., Xian, M.: Biodiesel production from oleaginous microorganisms. Renew. Energy. 34, 1–5 (2009). https://doi.org/10.1016/j.renene.2008.04.014

    Article  Google Scholar 

  16. Sitepu, I.R., Ignatia, L., Franz, A.K., Wong, D.M., Faulina, S.A., Tsui, M., Kanti, A., Boundy-Mills, K.: An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J. Microbiol. Methods. 91, 321–328 (2012). https://doi.org/10.1016/j.mimet.2012.09.001

    Article  Google Scholar 

  17. Sitepu, I.R., Ignatia, S.R., Levin, L., Bruce German, D., Gillies, J., Almada, L.A., Boundy-Mills, L.A.: Manipulation of culture conditions alters lipid contentand fatty acid profiles of a wide variety of known and new oleaginous yeasts species. Bioresour. Technol. 144, 360–369 (2013). https://doi.org/10.1016/j.biortech.2013.06.047

    Article  Google Scholar 

  18. Alankar, S.S.L., Nithianandam, S., Rastogi, S., Simar, S., Rajeswari, G., Kumar, V., Jacob, S., Chandel, A.: Bioprocessing of fermentable sugars derived from water hyacinth into microbial lipids and single cell proteins by oleaginous yeast Rhodosporidium toruloides NCIM 3547. Biomass Convers. Biorefinery (2021). https://doi.org/10.1007/s13399-021-02007-6

    Article  Google Scholar 

  19. Xu, P.: Analytical solution for a hybrid logistic-hybrid logistic-monod cell growth model in batch and continuous stirred tank reactor culture. Biotechnol. Bioeng. 117, 873–878 (2020). https://doi.org/10.1002/bit.27230

    Article  Google Scholar 

  20. Rajeswari, G., Jacob, S.: Saccharolysis of laccase delignified Aloe vera leaf rind and fermentation through free and immobilized yeast for ethanol production. J. Food Process Eng. (2020). https://doi.org/10.1111/jfpe.13514

    Article  Google Scholar 

  21. Eaton, A.D., Clesceri, L.S., Greenberg, A.E., Franson, M.A.H.: Standard methods for the examination of water and wastewater. American Public Health Association, Washington (1998)

    Google Scholar 

  22. Marlett, J.A., Lee, S.C.: Dietary fiber, lignocellulose and hemicellulose contents of selected foods determined by modifed and unmodifed van Soest procedures. J. Food Sci. 45, 1688–1693 (2006). https://doi.org/10.1111/j.1365-2621.1980.tb07590.x

    Article  Google Scholar 

  23. Sun, J.X., Sun, F., Zhao, H., Sun, R.C.: Isolation and characterization of cellulose from sugarcane bagasse. Polym. Degrad. Stab. 84, 331–339 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.02

    Article  Google Scholar 

  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/S0021-9258(19)52451-640

    Article  Google Scholar 

  25. Hussain, M.A., Huq, M.E., Rahman, S.M.: Estimation of lignin in jute by titration method. Pak J. Biol. Sci. 5, 521–522 (2002). https://doi.org/10.3923/pjbs.2002.521.522

    Article  Google Scholar 

  26. Kirk, R.S., Sawyer, R.: Pearson’s Composition and Analysis of Foods, 9th edn. Longman group Limited, United Kingdom (1991)

    Google Scholar 

  27. Cunniff, P.: Official methods of analysis of AOAC INTERNATIONAL, vol. 1, 16th edn. AOAC INTERNATIONAL, Virginia (1995)

    Google Scholar 

  28. Huang, X.F., Liu, J.N., Lu, L.J., Peng, K.M., Yang, G.X., Liu, J.: Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides. Bioresour. Technol. 206, 141–149 (2016). https://doi.org/10.1016/j.biortech.2016.01.073

    Article  Google Scholar 

  29. Hu, C., Wu, S., Wang, Q., Jin, G., Shen, H., Zhao, Z.K.: Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol. Biofuels. 4, 25 (2011). https://doi.org/10.1186/1754-6834-4-25

    Article  Google Scholar 

  30. Shankar, K., Kulkarni, N.S., Jayalakshmi, S.K., Sreeramulu, K.: Saccharification of the pretreated husks of corn, peanut and coffee cherry by the lignocellulolytic enzymes secreted by Sphingobacterium sp. ksn for the production of bioethanol. Biomass Bioenerg 127, 105298 (2019). https://doi.org/10.1016/j.biombioe.2019.105298

    Article  Google Scholar 

  31. Naresh, S., Kunasundari, B., Gunny, A.A.N., Teoh, Y.P., Shuit, S.H., Ng, Q.H., Hoo, P.Y.: Isolation and partial characterisation of thermophilic cellulolytic bacteria from north Malaysian tropical mangrove soil. Trop. Life Sci. Res. 30(1), 123–147 (2019). https://doi.org/10.21315/tlsr2019.30.1.8

    Article  Google Scholar 

  32. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  33. Pham, P.J., Hernandez, R., French, W.T., Estill, B.G., Mondala, A.H.: A spectrophotometric method for quantitative determination of xylose in fermentation medium. Biomass Bioenergy 35(7), 2814–2821 (2011). https://doi.org/10.1016/j.biombioe.2011.03.006

    Article  Google Scholar 

  34. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959). https://doi.org/10.1139/y59-099

    Article  Google Scholar 

  35. Amirsadeghi, M., Shields-Menard, S., French, W.T., Hernandez, R.: Lipid production by Rhodotorula glutinis from pulp and paper wastewater for biodiesel production. J. Sustain. Bioenergy Syst. 5, 114 (2015). https://doi.org/10.4236/jsbs.2015.5301142

    Article  Google Scholar 

  36. Mandels, M., Andreotii, R., Roche, C.: Measurement of saccharifying cellulase. Biotechnol. Biofuels 2, 21 (2009). https://doi.org/10.1186/1754-6834-2-21

    Article  Google Scholar 

  37. Aggarwal, N.K., Goyal, V., Saini, A., Yadav, A., Gupta, R.: Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. Biotech. 7(3), 158 (2017). https://doi.org/10.1007/s13205-017-0755-0

    Article  Google Scholar 

  38. Daniela, C., Miroslav, O.: Repeated-batch production of laccase by Ceriporiopsis subvermispora. Nova Biotechnol. Chim. 12, 120–128 (2013). https://doi.org/10.2478/nbec-2013-0014

    Article  Google Scholar 

  39. Seo, H.B., Kim, H.J., Lee, O.K., Ha, J.H., Lee, H.Y., Jung, K.H.: Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. J. Ind. Microbiol. Biotechnol. 36(2), 285–292 (2009). https://doi.org/10.1007/s10295-008-0497-4

    Article  Google Scholar 

  40. Gong, G., Liu, D., Huang, Y.: Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Bioprocess. Biosyst Eng. 107, 67–73 (2010). https://doi.org/10.1016/j.biosystemseng.2010.05.012

    Article  Google Scholar 

  41. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray difractometer. Text. Res. J. 29, 786–794 (1959). https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  42. Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K.U., Sukumaran, R.K., Pandey, A.: Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew. Energy 37(1), 109–116 (2012). https://doi.org/10.1016/j.renene.2011.06.007

    Article  Google Scholar 

  43. Yu, X., Zheng, Y., Dorgan, K.M., Chen, S.: Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour. Technol. 102, 134–6140 (2011). https://doi.org/10.1016/j.biortech.2011.02.081

    Article  Google Scholar 

  44. Prabhu, K., Jayakumar, A., Sreelakshmi, K.P., Raha, A., Maitra, M., Radha, P.: Utilization of microbial oil produced from Pichia kudriavzevii NCIM 3653 using paper mill sludge as an alternative substrate for biodiesel synthesis. Biofuels (2019). https://doi.org/10.1080/17597269.2019.1619029

    Article  Google Scholar 

  45. Cordell, R.L., Pandya, H., Hubbard, M., Turner, M.A., Monks, P.S.: GC-MS analysis of ethanol and other volatile compounds in micro-volume blood samples—quantifying neonatal exposure. Anal. Bioanal. Chem. 405, 4139–4147 (2013). https://doi.org/10.1007/s00216-013-6809-1

    Article  Google Scholar 

  46. Yaegashi, J., Kirby, J., Ito, M., Sun, J., Dutta, T., Mirsiaghi, M., Sundstrom, E.R., Rodriguez, A., Baidoo, E., Tanjore, D., Pray, T., Sale, K., Singh, S., Keasling, J.D., Simmons, B., Singer, A., Magnuson, S.W., Arkin, J.K., Skerker, A.P., Gladden, J.M.: Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol. Biofuels (2017). https://doi.org/10.1186/s13068-017-0927-5

    Article  Google Scholar 

  47. Rajeswari, G., Arutselvy, B., Jacob, S.: Delignification of aloe vera rind by mild acid associated microwave pretreatment to persuade enhanced enzymatic saccharification. Waste Biomass Valoriz. 11, 5965–5975 (2019). https://doi.org/10.1007/s12649-019-00830-7

    Article  Google Scholar 

  48. Zhu, Z., Rezende, C.A., Simister, R., McQueen-Mason, S.J., Macquarrie, D.J., Polikarpov, I., Gomez, L.D.: Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 93, 269–278 (2016). https://doi.org/10.1016/j.biombioe.2016.06.017

    Article  Google Scholar 

  49. Chang, V.S., Holtzapple, M.T.: Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. (2000). https://doi.org/10.1385/abab:84-86:1-9:5

    Article  Google Scholar 

  50. Zhang, M., Qi, W., Liu, R., Su, R., Wu, S., He, Z.: Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34, 525–532 (2010). https://doi.org/10.1016/j.biombioe.2009.12.018

    Article  Google Scholar 

  51. Guo, F., Shi, W., Sun, W., Li, X., Wang, F., Zha, J., Qu, Y.: Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol. Biofuels 7, 38 (2014). https://doi.org/10.1186/1754-6834-7-38

    Article  Google Scholar 

  52. Corredor, D.Y., Salazar, J.M., Hohn, K.L., Bean, S., Bean, B., Wang, D.: Evaluation and characterization of forage sorghum as feedstock for fermentable sugar production. Appl. Biochem. Biotechnol. 158, 164–179 (2007). https://doi.org/10.1007/s12010-008-8340-y

    Article  Google Scholar 

  53. Beopoulos, A., Nicaud, J.M., Gaillardin, C.: An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl. Microbiol. Biotechnol. 90, 1193–1206 (2011). https://doi.org/10.1007/s00253-011-3212-8

    Article  Google Scholar 

  54. Zhao, X., Peng, F., Du, W., Liu, C., Liu, D.: Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterifcation of the lipid. Bioprocess. Biosyst. Eng. 35, 993–1004 (2012). https://doi.org/10.1007/s00449-012-0684-6

    Article  Google Scholar 

  55. Huang, C., Jiang, Y., Guo, G., Hwang, W.: Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresource 102(3), 3322–3329 (2011). https://doi.org/10.1016/j.biortech.2010.10.111

    Article  Google Scholar 

  56. Deeba, F., Kumar, K.K., Wani, S.A., Singh, A.K., Sharma, J., Gaur, N.A.: Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integratedbiorefinery framework. Bioresour. Technol. 351, 127067 (2022). https://doi.org/10.1016/j.biortech.2022.127067

    Article  Google Scholar 

  57. Jönsson, L.J., Alriksson, B., Nilvebrant, N.O.: Bioconversion of lignocellulose: inhibitors and detoxifcation. Biotechnol. Biofuels 6, 16 (2013). https://doi.org/10.1186/1754-6834-6-16

    Article  Google Scholar 

  58. Diwan, B., Gupta, P.: Conversion of rice straw to caprylic acid-rich microbial oils by oleaginous yeast isolates. Biomass Convers. Biorefn. (2020). https://doi.org/10.1007/s13399-020-01039-8

    Article  Google Scholar 

  59. Saini, R., Hegde, K., Osorio-Gonzalez, C.S., Brar, S.K., Vezina, P.: Evaluating the potential of Rhodosporidium toruloides-1588 for high lipid production using undetoxified wood hydrolysate as a carbon source. Energies 13, 5960 (2020). https://doi.org/10.3390/en13225960

    Article  Google Scholar 

  60. Yuan, J., Ai, Z., Zhang, Z., Yan, R., Zeng, Q., Zhu, D.: Microbial oil production by Trichosporon cutaneum B3 using cassava starch. Sheng Wu Gong Cheng Xue Bao 27(3), 453–60 (2011). (Chinese)

    Google Scholar 

  61. Ling, J., Xu, Y., Lu, C., He, P., Chen, J., Zheng, L., Talawar, M.P., Xie, G., Du, Q.: Accelerated lipid production from distillery wastewater by Rhodosporidium toruloides using an open-bubble-column reactor under non-aseptic conditions. Int. Biodeterior. Biodegrad. 143, 104720 (2011). https://doi.org/10.1016/j.ibiod.2019.104720

    Article  Google Scholar 

  62. Liu, Z., Feist, A., Dragone, G., Mussatto, S.I.: Lipid and carotenoid production from wheat straw hydrolysates by different oleaginous yeasts. J. Clean. Prod. 249, 119308 (2020). https://doi.org/10.1016/j.jclepro.2019.119308

    Article  Google Scholar 

  63. Rane, D.V., Pawar, P.P., Odaneth, A.A., Lali, A.M.: Microbial oil production by the oleaginous red yeast, Rhodotorula glutinis NCIM 3168, using corncob hydrolysate. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01298-z

    Article  Google Scholar 

  64. Quarterman, J., Slininger, P.J., Kurtzman, C.P., Thompson, S.R., Dien, B.S.: A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate. Appl. Microbiol. Biotechnol 101, 3319–3334 (2017). https://doi.org/10.1007/s00253-016-8062-y

    Article  Google Scholar 

  65. Encinar, J.M., Pardal, A., Sánchez, N., Nogales, S.: Biodiesel by transesterification of rapeseed oil using ultrasound: A kinetic study of base-catalysed reactions. Energies. 11, 2229 (2018). https://doi.org/10.3390/en11092229

    Article  Google Scholar 

  66. Farha, D., Kiran, K., Wani, S., Singh, A., Sharma, J., Gaur, N.: Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework. Bioresour. Technol 351, 127067 (2022). https://doi.org/10.1016/j.biortech.2022.127067

    Article  Google Scholar 

  67. Qi, F., Shen, P., Hu, R., Xue, T., Jiang, X., Qin, L., Chen, Y., Huang, J.: Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate. Biotechnol. Biofuels 13, 74 (2020). https://doi.org/10.1186/s13068-020-01712-0

    Article  Google Scholar 

  68. Spier, F., Buffon, J.G., Burkert, C.A.V.: Bioconversion of raw glycerol generated from the synthesis of biodiesel by different oleaginous yeasts: lipid content and fatty acid profile of biomass. Indian J. Microbiol 55, 415–422 (2015). https://doi.org/10.1007/s12088-015-0533-9

    Article  Google Scholar 

  69. Sanford, S.D., White, J.M., Shah, P.S., Wee, C., Valverde, M.A., Meier, G.R.: Feedstock and Biodiesel Characteristics Report. Renewable Energy Group, Inc., https://www.regfuel.com/https://biodieseleducation.org/Feedstock/documents/Feedstock%20and%20Biodiesel%20Characteristics%20Report%20(1).pdf/ (2009). Accessed 29 November 2022

  70. Singh, G., Sinha, S., Bandyopadhyay, K.K., Lawrence, M., Paul, D.: Triauxic growth of an oleaginous red yeast Rhodosporidium toruloides on waste extract for enhanced and concomitant lipid and β-carotene production. Microb. Cell. Fact. 17, 182 (2018). https://doi.org/10.1186/s12934-018-1026-4

    Article  Google Scholar 

  71. Xu, X.H., Liu, Z.X., Shi, X.Y., Mia, C., Sheng, S., Xu, Y., Wu, F.A., Wang, J.: Fed-batch fermentation of Yarrowia lipolytica using defatted silkworm pupae hydrolysate: a dynamic model-based approach for high yield of lipid production. Waste Biomass Valoriz 9, 2399–2411 (2018). https://doi.org/10.1007/s12649-017-0180-y

    Article  Google Scholar 

  72. Dhabhai, R., Chaurasia, S.P., Singh, K., Dalai, A.K.: Kinetics of bioethanol production employing mono- and co-cultures of Saccharomyces cerevisiae and Pichia stipites. Chem. Eng. Technol 36(10), 1651–1657 (2013). https://doi.org/10.1002/ceat.201300092

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur for the financial and infrastructure support (HPLC and GC-MS) to carry out the research work. The authors also acknowledge the Nanotechnology Research Centre (NRC), SRMIST for providing the analytical instrument facilities (XRD and FT-IR) and SCIF: SRM Central Instrumentation facility (SEM).

Funding

There is no external funding received for carrying out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Jacob.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 486.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathi, S.D., Jacob, S. Comprehensive Treatment Strategy for Banana Inflorescence Bract to Synthesize Biodiesel and Bioethanol Through Fungal Biorefinery. Waste Biomass Valor 15, 417–436 (2024). https://doi.org/10.1007/s12649-023-02166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02166-9

Keywords

Navigation