Skip to main content

Advertisement

Log in

Bioconversion of Raw Glycerol Generated from the Synthesis of Biodiesel by Different Oleaginous Yeasts: Lipid Content and Fatty Acid Profile of Biomass

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this work, 12 different yeast strains were evaluated to gauge their ability to accumulate lipids using raw glycerol as the main carbon source. Lipomyces lipofer NRRL Y-1155 stood out above the other strains, achieving 9.48 g/l biomass, 57.64 % lipid content and 5.46 g/l lipid production. The fatty acid profile was similar to vegetable oils commonly used in the synthesis of biodiesel, with the predominance of polyunsaturated acids, especially linoleic acid, reaching 68.3 % for Rhodotorula glutinis NRRL YB-252. The occurrence of palmitic acid (39.3 % for Lipomyces starkeyi NRRL Y-11557) was also notable. Thus, yeast biomass with high lipid content can be a sustainable and renewable alternative as a raw material for the biodiesel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13. doi:10.1186/1754-6834-5-13

  2. Beatriz A, Araújo YJK, Lima DP (2011) Glicerol: um breve histórico e aplicação em sínteses estereosseletivas. Quim Nova 34:306–319

    Article  CAS  Google Scholar 

  3. Poli JS, Lützhoft HH, Karakashev DB, Valente P, Angelidaki I (2014) An environmentally-friendly fluorescent method for quantification of lipid contents in yeast. Bioresour Technol 151:388–391. doi:10.1016/j.biortech.2013.09.128

    Article  CAS  PubMed  Google Scholar 

  4. Menezes RS, Leles MIG, Soares AT, Brandão PI, Franco M, Antoniosi Filho NR (2013) Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Quim Nova 36:10–15

    Article  CAS  Google Scholar 

  5. Ryu B, Kim J, Kim K, Choi Y, Han J, Yang J (2013) High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry. Bioresour Technol 135:357–364. doi:10.1016/j.biortech.2012.09.054

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780. doi:10.1002/jctb.1744

    Article  CAS  Google Scholar 

  7. Thiru M, Sankh S, Rangaswamy V (2011) Process for biodiesel production from Cryptococcus curvatus. Bioresour Technol 102:10436–10440. doi:10.1016/j.biortech.2011.08.102

    Article  CAS  PubMed  Google Scholar 

  8. Leoneti AB, Aragão-Leoneti V, Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145. doi:10.1016/j.renene.2012.02.032

    Article  CAS  Google Scholar 

  9. Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358. doi:10.1016/j.biortech.2009.11.024

    Article  CAS  PubMed  Google Scholar 

  10. Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206. doi:10.1007/s00253-011-3212-8

    Article  CAS  PubMed  Google Scholar 

  11. Xu J, Zhao X, Wang W, Du W, Liu D (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36. doi:10.1016/j.bej.2012.04.003

    Article  CAS  Google Scholar 

  12. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32:60–71. doi:10.1016/j.biombioe.2007.06.007

    Article  CAS  Google Scholar 

  13. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi:10.1007/s12088-014-0509-1

    Article  CAS  Google Scholar 

  14. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218. doi:10.1016/j.procbio.2010.08.009

    Article  CAS  Google Scholar 

  15. Evans CT, Ratledge C, Gilbert SC (1985) A rapid screening method for lipid-accumulating yeast using a replica-printing technique. J Microbiol Methods 4:203–210. doi:10.1016/0167-7012(85)90038-7

    Article  CAS  Google Scholar 

  16. Evans CT, Ratledge C (1983) Biochemical activities during lipid accumulation in Candida curvata. Lipids 18:630–635

    Article  CAS  PubMed  Google Scholar 

  17. Santos EO, Michelon M, Furlong EB, Burkert JFM, Kalil SJ, Burkert CAV (2012) Evaluation of the composition of culture medium for yeast biomass production using raw glycerol from biodiesel synthesis. Braz J Microbiol 43:432–440. doi:10.1590/S1517-83822012000200002

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dai CC, Tao J, Xie F, Dai YJ, Zhao M (2007) Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. Afr J Biotechnol 6:2130–2134

    CAS  Google Scholar 

  19. Zhang Y, Rittmann BE, Wang J, Sheng Y, Yu J, Shi H, Qian Y (2005) High-carbohydrate wastewater treatment by IAL-CHS with immobilized Candida tropicalis. Process Biochem 40:857–863. doi:10.1016/j.procbio.2004.02.010

    Article  Google Scholar 

  20. Bligh EG, Dyer JW (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  21. Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38:514–515. doi:10.1021/ac60235a044

    Article  CAS  Google Scholar 

  22. Duarte SH, Andrade CCP, Ghiselli G, Maugeri F (2013) Exploration of Brazilian biodiversity and selection of a new oleaginous yeast strain cultivated in raw glycerol. Bioresour Technol 138:377–381. doi:10.1016/j.biortech.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  23. Çelik E, Ozbay N, Oktar N, Çalik P (2008) Use of biodiesel byproduct crude glycerol as the carbon source for fermentation processes by recombinant Pichia pastoris. Ind Eng Chem Res 47:2985–2990. doi:10.1021/ie071613o

    Article  Google Scholar 

  24. Raimondi S, Rossi M, Leonardi A, Bianchi MM, Rinaldi T, Amaretti A (2014) Getting lipids from glycerol: new perspectives on biotechnological exploitation of Candida freyschussii. Microb Cell Fact 13:1–11. doi:10.1186/1475-2859-13-83

    Article  Google Scholar 

  25. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789. doi:10.1128/AEM.01412-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5. doi:10.1016/j.renene.2008.04.014

    Article  Google Scholar 

  27. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056. doi:10.1016/j.biortech.2007.06.045

    Article  CAS  PubMed  Google Scholar 

  28. Davoli P, Mierau V, Weber RSW (2004) Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Prikl Biokhim Mikrobiol 40:460–465

    CAS  PubMed  Google Scholar 

  29. Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels 23:2325–2341

    Article  CAS  Google Scholar 

  30. Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361. doi:10.1016/j.biortech.2008.05.030

    Article  CAS  PubMed  Google Scholar 

  31. Zhao C-H, Zhang T, Li M, Chi Z-M (2010) Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem 45:1121–1126. doi:10.1016/j.procbio.2010.04.002

    Article  Google Scholar 

  32. Lin J, Shen H, Tan H, Zhao X, Wu S, Hu C, Zhao ZK (2011) Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J Biotechnol 152:184–188. doi:10.1016/j.jbiotec.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  33. Chang Y-H, Chang K-S, Hsu C-L, Chuang L-T, Chen C-Y, Huang F-Y, Jang H-D (2013) A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production. Fuel 105:711–717. doi:10.1016/j.fuel.2012.10.033

    Article  CAS  Google Scholar 

  34. Lian J, Garcia-Perez M, Chen S (2013) Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol 133:183–189. doi:10.1016/j.biortech.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  35. Fakas S, Papanikolaou S, Bastos A, Galiotoupanayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenerg 33:573–580. doi:10.1016/j.biombioe.2008.09.006

    Article  CAS  Google Scholar 

  36. Tang H, Abunasser N, Garcia MED, Chen M, Simon NKY, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88:3324–3330. doi:10.1016/j.apenergy.2010.09.013

    Article  CAS  Google Scholar 

  37. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268. doi:10.1016/j.biortech.2008.06.039

    Article  CAS  PubMed  Google Scholar 

  38. Gong ZW, Wang Q, Shen HW, Hu CM, Jin GJ, Zhao ZBK (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24. doi:10.1016/j.biortech.2012.04.063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the State Research Foundation of Rio Grande do Sul (FAPERGS), the Brazilian Council for Scientific and Technological Development (CNPq) and the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. V. Burkert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spier, F., Buffon, J.G. & Burkert, C.A.V. Bioconversion of Raw Glycerol Generated from the Synthesis of Biodiesel by Different Oleaginous Yeasts: Lipid Content and Fatty Acid Profile of Biomass. Indian J Microbiol 55, 415–422 (2015). https://doi.org/10.1007/s12088-015-0533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0533-9

Keywords

Navigation