Skip to main content
Log in

A Strategy for Simultaneous Xylose Utilization and Enhancement of Cellulase Enzyme Production by Trichoderma reesei Cultivated on Liquid Hydrolysate Followed by Induction with Feeding of Solid Sugarcane Bagasse

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Production of cellulase enzyme by Trichoderma reesei using cheap lignocellulosic material sugarcane bagasse was studied. Enzyme production from lignocellulosic biomass required pretreatment to decrease the cellulose crystallinity where inhibitors are released in hydrolysate. Strategies for solid bagasse feeding and pH shifting during fermentation have been developed for cellulase production enhancement by T. reesei NCIM 1186. To improve the cellulase production along with xylose utilization from the hydrolysate various feeding approach of pretreated solid bagasse in liquid hydrolysate grown culture has been investigated. This T. reesei has shown the capability of complete consumption of acetic acid, furfural, 5-hydroxymethyl, furfural and formic acid along with enzyme production. The maximum cellulase production of 1.5 U/ml CMCase and 1.01 U/ml FPase was obtained using a solid bagasse strategy developed here where T. reesei was grown in sugar rich hydrolysate followed by early feeding of pretreated solid bagasse along with pH shifting strategy in a stirred tank bioreactor. This production was almost fivefolds increment of both FPase and CMCase compared to culture grown in whole slurry mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ellila, S., Fonseca, L., Uchima, C., Cota, J., Goldman, G.H., Saloheimo, M., Sacon, V., Siika-aho, M.: Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 10(1), 30 (2017)

    Article  Google Scholar 

  2. Brethauer, S., Studer, M.H.: Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy. Environ. Sci. 7(4), 1446–1453 (2014)

    Article  Google Scholar 

  3. Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A.: Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34(2), 421–424 (2009)

    Article  Google Scholar 

  4. Pere, J., Puolakka, A., Nousiainen, P., Buchert, J.: Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J. Biotechnol. 89(2–3), 247–255 (2001)

    Article  Google Scholar 

  5. Dienes, D., Egyhazi, A., Reczey, K.: Treatment of recycled fiber with Trichoderma cellulases. Ind. Crop Prod. 20(1), 11–21 (2004)

    Article  Google Scholar 

  6. Galante, Y.M., DeConti, A., Monteverdi, R.: Application of Trichoderma enzymes in food and feed industries. In: Harman, G.F., Kubicek, C.P. (eds.) Trichoderma and Gliocladium—enzymes, vol. 2, pp. 327–342. Taylor & Francis, London (1998)

    Google Scholar 

  7. Mansfield, S.D., Wong, K.K.Y., DeJong, E., Saddler, J.N.: Modification of Douglas-fir mechanical and kraft pulps by enzyme treatment. Tappi J. 79(8), 125–132 (1996)

    Google Scholar 

  8. Harman, G.E., Björkman, T.: Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Kubicek, C.P., Harman, G.E. (eds.) Trichoderma and Gliocladium, vol. 2, pp. 229–265. Taylor and Francis, London (1998)

    Chapter  Google Scholar 

  9. Khan, M.M.H., Ali, S., Fakhru’L-Razi, A., Alam, M.Z.: Use of fungi for the bioconversion of rice straw into cellulase enzyme. J. Environ. Sci. Health B 42(4), 381–386 (2007)

    Article  Google Scholar 

  10. Kogo, T., Yoshida, Y., Koganei, K., Matsumoto, H., Watanabe, T., Ogihara, J., Kasumi, T.: Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour. Technol. 233, 67–73 (2017)

    Article  Google Scholar 

  11. Rocha, V.A.L., Maeda, R.N., Anna, L.M.M.S., Pereira, N.: Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium. Electron. J. Biotechnol. 16(5), 1 (2013)

    Article  Google Scholar 

  12. Alriksson, B., Rose, S.H., van Zyl, W.H., Sjode, A., Nilvebrant, N.O., Jonsson, L.J.: Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl. Environ. Microb. 75(8), 2366–2374 (2009)

    Article  Google Scholar 

  13. Delabona, P.D., Lima, D.J., Robl, D., Rabelo, S.C., Farinas, C.S., Pradella, J.G.D.: Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J. Ind. Microbiol. Biotechnol. 43(5), 617–626 (2016)

    Article  Google Scholar 

  14. Romero, M.D., Aguado, J., Gonzalez, L., Ladero, M.: Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb. Technol. 25(3–5), 244–250 (1999)

    Article  Google Scholar 

  15. Xu, C.Y., Ma, F.Y., Zhang, X.Y.: Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. J. Biosci. Bioeng. 108(5), 372–375 (2009)

    Article  Google Scholar 

  16. Sun, H.Y., Li, J.H., Zhao, P.J., Peng, M.: Banana peel: a novel substrate for cellulase production under solid-state fermentation. Afr. J. Biotechnol. 10(77), 17887–17890 (2011)

    Google Scholar 

  17. Kuzmanova, S., Vandeska, E., Dimitrovski, A.: Production of mycelial protein and cellulolytic enzymes from food wastes. J. Ind. Microbiol. 7(4), 257–261 (1991)

    Article  Google Scholar 

  18. Zha, Y., Muilwijk, B., Coulier, L., Punt, P.J.: Inhibitory compounds in lignocellulosic biomass hydrolysates during hydrolysate fermentation processes. J. Bioprocess. Biotech. 2, 112–123 (2012)

    Article  Google Scholar 

  19. Pradoa, C.A., Souzaa, O., Sellina, N., Marangonib, C.: Comparison between single and multi-effect evaporators for sugar concentration in ethanol production. J. High Energy Phys. 43, 541–546 (2015)

    Google Scholar 

  20. Dehkhoda, A., Brandberg, T., Taherzadeh, M.J.: Comparison of vacuum and high pressure evaporated wood hydrolyzate for ethanol production by repeated fed-batch using flocculating Saccharomyces cerevisiae. Bioresources 4(1), 309–320 (2009)

    Google Scholar 

  21. Liu, S.J., Amidon, T.E., Wood, C.D.: Membrane filtration: concentration and purification of hydrolyzates from biomass. J. Biobased Mater. Bioenergy 2(2), 121–134 (2008)

    Article  Google Scholar 

  22. Malmali, M., Stickel, J.J., Wickramasinghe, S.R.: Sugar concentration and detoxification of clarified biomass hydrolysate by nanofiltration. Sep. Purif. Technol. 132, 655–665 (2014)

    Article  Google Scholar 

  23. Mussatto, S.I., Santos, J.C., Roberto, I.C.: Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J. Chem. Technol. Biotechnol. 79(6), 590–596 (2004)

    Article  Google Scholar 

  24. Maiti, S.K., Thuyavan, Y.L., Singh, S., Oberoi, H.S., Agarwal, G.P.: Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes. Bioresour. Technol. 114, 419–427 (2012)

    Article  Google Scholar 

  25. Weng, Y.H., Wei, H.J., Tsai, T.Y., Lin, T.H., Wei, T.Y., Guo, G.L., Huang, C.P.: Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration. Bioresour. Technol. 101(13), 4889–4894 (2010)

    Article  Google Scholar 

  26. Greer, D.R., Basso, T.P., Ibanez, A.B., Bauer, S., Skerker, J.M., Ozcam, A.E., Leon, D., Shin, C., Arkin, A.P., Balsara, N.P.: Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes. Green Chem. 16(9), 4206–4213 (2014)

    Article  Google Scholar 

  27. Nichols, N.N., Sharma, L.N., Mowery, R.A., Chambliss, C.K., van Walsum, G.P., Dien, B.S., Iten, L.B.: Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb. Technol. 42(7), 624–630 (2008)

    Article  Google Scholar 

  28. Palmqvist, E., HahnHagerdal, B., Szengyel, Z., Zacchi, G., Reczey, K.: Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb. Technol. 20(4), 286–293 (1997)

    Article  Google Scholar 

  29. Hou-Rui, Z., Xiang-Xiang, Q., Silva, S.S., Sarrouh, B.F., Ai-Hua, C., Yu-Heng, Z., Ke, J., Qiu, X.: Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl. Biochem. Biotech. 152(2), 199–212 (2009)

    Article  Google Scholar 

  30. Larsson, S., Reimann, A., Nilvebrant, N.O., Jonsson, L.J.: Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotech. 77, 91–103 (1999)

    Article  Google Scholar 

  31. Griffin, H.L., Sloneker, J.H., Inglett, G.E.: Cellulase production by Trichoderma viride on feedlot waste. Appl. Microbiol. 27(6), 1061–1066 (1974)

    Article  Google Scholar 

  32. Kansoh, A.L., Essam, S.A., Zeinat, A.N.: Biodegradation and utilization of bagasse with Trichoderma reesie. Polym. Degrad. Stabil. 63(2), 273–278 (1999)

    Article  Google Scholar 

  33. Li, X.H., Yang, H.J., Roy, B., Park, E.Y., Jiang, L.J., Wang, D., Miao, Y.G.: Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol. Res. 165(3), 190–198 (2010)

    Article  Google Scholar 

  34. Prasetyo, J., Sumita, S., Okuda, N., Park, E.Y.: Response of cellulase activity in pH-controlled cultures of the filamentous fungus acremonium cellulolyticus. Appl. Biochem. Biotech. 162(1), 52–61 (2010)

    Article  Google Scholar 

  35. Mandels, M., Reese, E.T.: Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73(2), 269–278 (1957)

    Article  Google Scholar 

  36. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)

    Article  Google Scholar 

  37. Ahamed, A., Vermette, P.: Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour. Technol. 100(23), 5979–5987 (2009)

    Article  Google Scholar 

  38. Tangnu, S.K., Blanch, H.W., Wilke, C.R.: Enhanced production of cellulase, hemicellulase, and beta-glucosidase by Trichoderma-reesei (Rut C-30). Biotechnol. Bioeng. 23(8), 1837–1849 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thanks to Indian Institute of Technology Guwahati for providing the facilities to carry out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen K. Maiti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maibam, P.D., Maiti, S.K. A Strategy for Simultaneous Xylose Utilization and Enhancement of Cellulase Enzyme Production by Trichoderma reesei Cultivated on Liquid Hydrolysate Followed by Induction with Feeding of Solid Sugarcane Bagasse. Waste Biomass Valor 11, 3151–3160 (2020). https://doi.org/10.1007/s12649-019-00645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00645-6

Keywords

Navigation