Skip to main content
Log in

Fabrication of SO42−/MO–Al2O3–ZrO2 (M = Ca, Mg, Sr, Ba) as Solid Acid–Base Nanocatalyst Used in Trans/Esterification Reaction

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The effect of loading alkaline earth metal oxides on sulfated alumina-zirconia (S/AZ), as a nanocatalyst in esterification of oleic acid (OA) and transesterification of waste cooking oil (WCO) was experimentally investigated. S/AZ modified by calcium (S/Ca–AZ), magnesium (S/Mg–AZ), strontium (S/Sr–AZ) and barium oxides (S/Ba–AZ) were synthesized by solvent-free method and characterized by various methods. Based on the results, zirconia (Z) and S/AZ exhibited less activity in biodiesel production due to their low acidity and basicity while their activities were clearly increased by loading alkaline earth metal oxides. Among the samples, S/Ba–AZ shows the highest activity in both esterification and transesterification reactions, followed by S/Mg–AZ, S/Ca–AZ, and S/Sr–AZ, respectively. However, evaluating the activity of catalysts in second uses as an important factor for industrial application of a catalyst shows that, although the activity of all samples decreases, S/Ca–AZ has the least deterioration in activity. This can be related to its small particle size (below 15 nm), and well bonding of the calcium oxides with other metal oxides and sulfate groups which eliminates the leaching of active phases. Results confirm that S/Ca–AZ can be chosen as the most appropriate nanocatalyst with high activity and stability for biodiesel production from low-cost feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jamil, F., Al-Haj, L., Al-Muhtaseb Ala’a, H., Al-Hinai Mohab, A., Baawain, M., Rashid, U., Ahmad Mohammad, N.M.: Current scenario of catalysts for biodiesel production: a critical review. Rev. Chem. Eng. 34(2), 267 (2018)

    Article  Google Scholar 

  2. Avhad, M.R., Marchetti, J.M.: Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: a review. Catal. Rev. 58(2), 157–208 (2016). https://doi.org/10.1080/01614940.2015.1103594

    Article  Google Scholar 

  3. Vieira, S.S., Graça, I., Fernandes, A., Lopes, J.M.F.M., Ribeiro, M.F., Magriotis, Z.M.: Influence of calcination temperature on catalytic, acid and textural properties of SO42−/La2O3/HZSM-5 type catalysts for biodiesel production by esterification. Microporous Mesoporous Mater. 270, 189–199 (2018). https://doi.org/10.1016/j.micromeso.2018.05.021

    Article  Google Scholar 

  4. Li, H., Niu, S., Lu, C., Li, J.: Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. Fuel 176, 63–71 (2016). https://doi.org/10.1016/j.fuel.2016.02.067

    Article  Google Scholar 

  5. Shokuhi Rad, A., Hoseini Nia, M., Ardestani, F., Nayebzadeh, H.: Esterification of waste chicken fat: sulfonated MWCNT toward biodiesel production. Waste Biomass Valorization (2016). https://doi.org/10.1007/s12649-016-9732-9

    Article  Google Scholar 

  6. Wan Omar, W.N.N., Saidina Amin, N.A.: Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology. Biomass Bioenergy 35(3), 1329–1338 (2011)

    Article  Google Scholar 

  7. Gardy, J., Osatiashtiani, A., Céspedes, O., Hassanpour, A., Lai, X., Lee, A.F., Wilson, K., Rehan, M.: A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B 234, 268–278 (2018). https://doi.org/10.1016/j.apcatb.2018.04.046

    Article  Google Scholar 

  8. Alessio, Z., Francisco, I., Rafael, L.: Advances in nanocatalyst design for biofuel production. ChemCatChem 10(9), 1968–1981 (2018). https://doi.org/10.1002/cctc.201701712 doi

    Article  Google Scholar 

  9. Shi, G., Yu, F., Wang, Y., Pan, D., Wang, H., Li, R.: A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil. Renew. Energy 92, 22–29 (2016). https://doi.org/10.1016/j.renene.2016.01.094

    Article  Google Scholar 

  10. Zhang, Q., Wei, F., Ma, P., Zhang, Y., Wei, F., Chen, H.: Mesoporous Al–Mo oxides as an effective and stable catalyst for the synthesis of biodiesel from the esterification of free-fatty acids in non-edible oils. Waste Biomass Valorization 9(6), 911–918 (2018). https://doi.org/10.1007/s12649-017-9865-5

    Article  Google Scholar 

  11. Wijayanti, H., Duangchan, A.: Effect of nickel promoter on solvent-free sulphated zirconia catalyst for the esterification of acetic acid with n-butanol. Can. J. Chem. Eng. 94(1), 81–88 (2016). https://doi.org/10.1002/cjce.22351

    Article  Google Scholar 

  12. Hwang, C.-C., Mou, C.-Y.: Alumina-promoted sulfated mesoporous zirconia catalysts. J. Phys. Chem. C 113(13), 5212–5221 (2009). https://doi.org/10.1021/jp810465n

    Article  Google Scholar 

  13. Yee, K.F., Lee, K.T., Abdullah, A.Z., Wu, J.C.S.: An alternative route for the preparation of sulfated zirconia loaded on alumina (SZA) for biodiesel production: an optimization study. Energy Sources A 35(14), 1296–1305 (2013). https://doi.org/10.1080/15567036.2010.516326

    Article  Google Scholar 

  14. Yee, K.F., Wu, J.C.S., Lee, K.T.: A green catalyst for biodiesel production from jatropha oil: optimization study. Biomass Bioenergy 35(5), 1739–1746 (2011)

    Article  Google Scholar 

  15. Rahmani Vahid, B., Saghatoleslami, N., Nayebzadeh, H., Maskooki, A.: Preparation of nano-size Al-promoted sulfated zirconia and the impact of calcination temperature on its catalytic activity. Chem. Biochem. Eng. Q. 26(2), 71–77 (2012)

    Google Scholar 

  16. Duric, D.: Biodiesel quality, standards and properties. In: Montero, G., Stoytcheva, M. (eds.) Biodiesel-Quality, Emissions and By-Products, pp. 3–29. InTech, Rijeka (2011)

    Google Scholar 

  17. Nuamsrinuan, N., Limsuwan, P., Naemchanthara, K.: The study of calcium oxide from cockle shell used as a low-cost catalyzer for biodiesel production. Appl. Mech. Mater. 879, 108–112 (2018). https://doi.org/10.4028/www.scientific.net/AMM.879.108

    Article  Google Scholar 

  18. Nayebzadeh, H., Saghatoleslami, N., Maskooki, A., Rahmani Vahid, B.: Preparation of supported nanosized sulfated zirconia by strontia and assessment of its activities in the esterification of oleic acid. Chem. Biochem. Eng. Q. 25(3), 259–265 (2014). https://doi.org/10.15255/CABEQ.2013.1894

    Article  Google Scholar 

  19. Hojjat, M., Nayebzadeh, H., Khadangi-Mahrood, M., Rahmani-Vahid, B.: Optimization of process conditions for biodiesel production over CaO–Al2O3/ZrO2 catalyst using response surface methodology. Chem. Pap. 71(3), 689–698 (2016). https://doi.org/10.1007/s11696-016-0096-1

    Article  Google Scholar 

  20. D’Cruz, A., Kulkarni, M., Meher, L., Dalai, A.: Synthesis of biodiesel from canola oil using heterogeneous base catalyst. J. Am. Oil Chem. Soc. 84(10), 937–943 (2007). https://doi.org/10.1007/s11746-007-1121-x

    Article  Google Scholar 

  21. Mootabadi, H., Salamatinia, B., Bhatia, S., Abdullah, A.Z.: Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 89(8), 1818–1825 (2010). https://doi.org/10.1016/j.fuel.2009.12.023

    Article  Google Scholar 

  22. Huang, C.-C., Yang, C.-J., Gao, P.-J., Wang, N.-C., Chen, C.-L., Chang, J.-S.: Characterization of an alkaline earth metal-doped solid superacid and its activity for the esterification of oleic acid with methanol. Green Chem. 17(6), 3609–3620 (2015). https://doi.org/10.1039/C5GC00188A

    Article  Google Scholar 

  23. Sun, Y., Ma, S., Du, Y., Yuan, L., Wang, S., Yang, J., Deng, F., Xiao, F.-S.: Solvent-free preparation of nanosized sulfated zirconia with brønsted acidic sites from a simple calcination. J. Phys. Chem. B 109(7), 2567–2572 (2005). https://doi.org/10.1021/jp046335a

    Article  Google Scholar 

  24. Ramu, S., Lingaiah, N., Prabhavathi Devi, B.L.A., Prasad, R.B.N., Suryanarayana, I., Sai Prasad, P.S.: Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity. Appl. Catal. A 276(1–2), 163–168 (2004)

    Article  Google Scholar 

  25. Nayebzadeh, H., Saghatoleslami, N., Rahmani Vahid, B., Maskooki, A.: Effect of calcination temperature on catalytic activity of synthesis SrO/S-ZrO2 by solvent-free method in esterification of oleic acid. Chem. Biochem. Eng. Q. 23(3), 267–273 (2013)

    Google Scholar 

  26. Kongwudthiti, S., Praserthdam, P., Inoue, M., Tanakulrungsank, W.: Synthesis of large-surface area silica-modified zirconia by the glycothermal method. J. Mater. Sci. Lett. 21(18), 1461–1464 (2002). https://doi.org/10.1023/a:1019935320818

    Article  Google Scholar 

  27. López, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G. Jr.: Esterification and transesterification on tungstated zirconia: effect of calcination temperature. J. Catal. 247(1), 43–50 (2007)

    Article  Google Scholar 

  28. Nayebzadeh, H., Saghatoleslami, N., Tabasizadeh, M.: Optimization of the activity of KOH/calcium aluminate nanocatalyst for biodiesel production using response surface methodology. J. Taiwan Inst. Chem. Eng. 68, 379–386 (2016). https://doi.org/10.1016/j.jtice.2016.09.041

    Article  Google Scholar 

  29. Xie, W., Peng, H., Chen, L.: Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl. Catal. A 300(1), 67–74 (2006). https://doi.org/10.1016/j.apcata.2005.10.048

    Article  Google Scholar 

  30. Park, Y.-M., Lee, D.-W., Kim, D.-K., Lee, J.-S., Lee, K.-Y.: The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal. Today 131(1–4), 238–243 (2008)

    Article  Google Scholar 

  31. Saravanan, K., Tyagi, B., Shukla, R.S., Bajaj, H.C.: Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst. Appl. Catal. B. 172–173, 108–115 (2015). https://doi.org/10.1016/j.apcatb.2015.02.014

    Article  Google Scholar 

  32. Cava, S., Tebcherani, S.M., Souza, I.A., Pianaro, S.A., Paskocimas, C.A., Longo, E., Varela, J.A.: Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater. Chem. Phys. 103(2–3), 394–399 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.046

    Article  Google Scholar 

  33. Teo, S.H., Taufiq-Yap, Y.H., Ng, F.L.: Alumina supported/unsupported mixed oxides of Ca and Mg as heterogeneous catalysts for transesterification of Nannochloropsis sp. microalga’s oil. Energy Convers. Manag. 88, 1193–1199 (2014). https://doi.org/10.1016/j.enconman.2014.04.049

    Article  Google Scholar 

  34. Fernandes, F.A.N., Lopes, R.M., Mercado, M.P., Siqueira, E.S.: Production of soybean ethanol-based biodiesel using CaO heterogeneous catalysts promoted by Zn, K and Mg. Int. J. Green Energy 13(4), 417–423 (2016). https://doi.org/10.1080/15435075.2014.977441

    Article  Google Scholar 

  35. Ianos, R., Istratie, R., Pacurariu, C., Lazau, R.: Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach. Phys. Chem. Chem. Phys. 18(2), 1150–1157 (2016). https://doi.org/10.1039/C5CP06240C

    Article  Google Scholar 

  36. Yoosuk, B., Krasae, P., Puttasawat, B., Udomsap, P., Viriya-empikul, N., Faungnawakij, K.: Magnesia modified with strontium as a solid base catalyst for transesterification of palm olein. Chem. Eng. J. 162(1), 58–66 (2010)

    Article  Google Scholar 

  37. Bhavsar, R.S., Limsay, R.H., Talwatkar, C.B.: Heterogeneous catalysis on combustion synthesised SrZrO3. Indian J. Chem. Technol. 19(2), 124–127 (2012)

    Google Scholar 

  38. Valigi, M., Gazzoli, D., Pettiti, I., Mattei, G., Colonna, S., De Rossi, S., Ferraris, G.: WOx/ZrO2 catalysts: part 1. Preparation, bulk and surface characterization. Appl. Catal. A 231(1–2), 159–172 (2002)

    Article  Google Scholar 

  39. Niu, L., Gao, L., Xiao, G., Fu, B.: Study on biodiesel from cotton seed oil by using heterogeneous super acid catalyst SO42−/ZrO2. Asia-Pac. J. Chem. Eng. 7(S2), S222–S228 (2010). https://doi.org/10.1002/apj.532

    Article  Google Scholar 

  40. Meng, Y.-L., Wang, B.-Y., Li, S.-F., Tian, S.-J., Zhang, M.-H.: Effect of calcination temperature on the activity of solid Ca/Al composite oxide-based alkaline catalyst for biodiesel production. Bioresour. Technol. 128(2), 305–309 (2013). https://doi.org/10.1016/j.biortech.2012.10.152

    Article  Google Scholar 

  41. Hashemzehi, M., Saghatoleslami, N., Nayebzadeh, H.: A study on the structure and catalytic performance of ZnxCu1–xAl2O4 catalysts synthesized by the solution combustion method for the esterification reaction. C. R. Chim. 19(8), 955–962 (2016). https://doi.org/10.1016/j.crci.2016.05.006

    Article  Google Scholar 

  42. Kazemifard, S., Nayebzadeh, H., Saghatoleslami, N., Safakish, E.: Assessment the activity of magnetic KOH/Fe3O4@Al2O3 core–shell nanocatalyst in transesterification reaction: effect of Fe/Al ratio on structural and performance. Environ. Sci. Pollut. Res. 25(32), 32811–32821 (2018)

    Article  Google Scholar 

  43. Zhang, B., Peng, J., Zhang, L., Ju, S.: Optimization of preparation for MgO by calcination from basic magnesium carbonate using response surface methodology. In: Magnesium Technology 2012. pp. 75–79. Wiley, Hoboken (2012)

    Google Scholar 

  44. Altass, H.M., Khder, A.E.R.S.: Surface and catalytic properties of triflic acid supported zirconia: effect of zirconia tetragonal phase. J. Mol. Catal. A 411, 138–145 (2016). https://doi.org/10.1016/j.molcata.2015.10.022

    Article  Google Scholar 

  45. Hosseini-Sarvari, M., Sodagar, E.: Esterification of free fatty acids (biodiesel) using nano sulfated-titania as catalyst in solvent-free conditions. C. R. Chim. 16(3), 229–238 (2013). https://doi.org/10.1016/j.crci.2012.10.016

    Article  Google Scholar 

  46. Liu, L., Wen, Z., Cui, G.: Preparation of Ca/Zr mixed oxide catalysts through a birch-templating route for the synthesis of biodiesel via transesterification. Fuel 158, 176–182 (2015). https://doi.org/10.1016/j.fuel.2015.05.025

    Article  Google Scholar 

  47. Chang, Y.-P., Chang, P.-H., Lee, Y.-T., Lee, T.-J., Lai, Y.-H., Chen, S.-Y.: Morphological and structural evolution of mesoporous calcium aluminate nanocomposites by microwave-assisted synthesis. Microporous Mesoporous Mater. 183, 134–142 (2014). https://doi.org/10.1016/j.micromeso.2013.09.013

    Article  Google Scholar 

  48. Kouzu, M., Fujimori, A., Fukakusa, R., Satomi, N., Yahagi, S.: Continuous production of biodiesel by the CaO-catalyzed transesterification operated with continuously stirred tank reactor. Fuel Process. Technol. 181, 311–317 (2018). https://doi.org/10.1016/j.fuproc.2018.10.008

    Article  Google Scholar 

  49. Hashemzehi, M., Saghatoleslami, N., Nayebzadeh, H.: Microwave-assisted solution combustion synthesis of spinel-type mixed oxides for esterification reaction. Chem. Eng. Commun. 204(4), 415–423 (2016). https://doi.org/10.1080/00986445.2016.1273831

    Article  Google Scholar 

  50. Shao, G.N., Sheikh, R., Hilonga, A., Lee, J.E., Park, Y.-H., Kim, H.T.: Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors. Chem. Eng. J. 215–216, 600–607 (2013). https://doi.org/10.1016/j.cej.2012.11.059

    Article  Google Scholar 

  51. Chen, X.-R., Ju, Y.-H., Mou, C.-Y.: Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J. Phys. Chem. C 111(50), 18731–18737 (2007). https://doi.org/10.1021/jp0749221

    Article  Google Scholar 

  52. Reddy, B.M., Reddy, G.K., Rao, K.N., Katta, L.: Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia: Beckmann rearrangement. J. Mol. Catal. A 306(1–2), 62–68 (2009)

    Article  Google Scholar 

  53. Rahmani Vahid, B., Haghighi, M.: Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: effect of fuel type on catalyst nanostructure and performance. Energy Convers. Manag. 134, 290–300 (2017). https://doi.org/10.1016/j.enconman.2016.12.048

    Article  Google Scholar 

  54. Parameswaram, G., Srinivas, M., Hari Babu, B., Sai Prasad, P.S., Lingaiah, N.: Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Catal. Sci. Technol. 3(12), 3242–3249 (2013). https://doi.org/10.1039/C3CY00532A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hojjat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayebzadeh, H., Hojjat, M. Fabrication of SO42−/MO–Al2O3–ZrO2 (M = Ca, Mg, Sr, Ba) as Solid Acid–Base Nanocatalyst Used in Trans/Esterification Reaction. Waste Biomass Valor 11, 2027–2037 (2020). https://doi.org/10.1007/s12649-018-0526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0526-0

Keywords

Navigation