Skip to main content
Log in

Mesoporous Al–Mo Oxides as an Effective and Stable Catalyst for the Synthesis of Biodiesel from the Esterification of Free-Fatty Acids in Non-edible Oils

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A kind of mesoporous Al–Mo mixed oxides as solid acid catalysts was designed and prepared through a facile and low-cost approach using stearic acid as a soft modifier, and investigated by X-ray diffraction, thermogravimetric, fourier transform infrared spectra, N2 adsorption–desorption, ammonia temperature programmed desorption and scanning electron microscopy. By using this catalyst, an environmentally benign process for esterification of free-fatty acids in non-edible Euphorbia lathyris crude oil with methanol was developed. It was shown that the activity of the catalysts for the esterification reaction is closely related to their mesoporous structures, surface area and acid properties. The Al–Mo solid acid catalyst exhibited an optimal esterification performance with 80.9% esterification efficiency under the optimum synthesis conditions. Moreover, the conversion remained over 73.2% after the catalyst being used for three times. These results showed that the catalysts have promising viability in esterification for biodiesel production in industry.

Graphical Abstract

Mesoporous Al–Mo oxides catalysts were prepared via a facile and low-cost modified approach and exhibited excellent catalytic activity and reusability in esterification reaction of high value acid non-edible oil and methanol. This material has great potential in the future production of biofuels used as the solid acid catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao, W. F., Yang, T. T., Li, H., Lu, Y. M., He, J., Liu, Y. X., Yang, S.: Waste Biomass Valoriz. 34, 1–8 (2016)

    Google Scholar 

  2. Lee, A. F., Bennett, J. A., Manayil, J. C., Wilson, K.: Chem. Soc. Rev. 43, 7887–7916 (2014)

    Article  Google Scholar 

  3. Zhang, J.Y., Hou, B.L., Wang, X.F., Li, Z.L., Wang, A.Q., Zhang, T.: J. Energy Chem. 24, 9–14 (2015)

    Article  Google Scholar 

  4. Jiao, J., Gai, Q. Y., Wei, F. Y., Luo, M., Wang, W., Fu, Y. J., Zu, Y. G.: Bioresource Technol. 143, 653–656 (2013)

    Article  Google Scholar 

  5. Meloni, D., Perra, D., Monaci, R., Cutrufello, M. G., Rombi, E., Ferino, I.: Appl. Catal. B. 184, 163–173 (2016)

    Article  Google Scholar 

  6. Takase, M., Min, Z., Feng, W., Yao, C., Zhao, T., Cobbina Samuel, J., Yang, L. Q., Wu, X. Y.: Energy Convers. Manag. 80, 117–125 (2014)

    Article  Google Scholar 

  7. Chakraborty, M., Baruah, D. C.: Energy 60, 159–167 (2013)

    Article  Google Scholar 

  8. Kingsolver, B. E.: Biomass 2, 281–298 (1982)

    Article  Google Scholar 

  9. Zhang, Q. Y., Li, H., Qin, W. T., Liu, X. F., Zhang, Y. P., Xue, W., Yang, S.: China Pet. Process. Pe. 15, 19–24 (2013)

    Google Scholar 

  10. Tagusagawa, C., Takagaki, A., Hayashi, S., Domen, K.: J. Am. Chem. Soc. 130, 7230–7231 (2008)

    Article  Google Scholar 

  11. Singh, S., Patel, A.: Fuel 159, 720–727 (2015)

    Article  Google Scholar 

  12. Gao, Z., Tang, S., Cui, X., Tian, S. J., Zhang, M. H.: Fuel 140, 669–676 (2015)

    Article  Google Scholar 

  13. Xie, W. L., Wang, H. Y., Li, H.: Ind. Eng. Chem. Res. 51, 225–231 (2012)

    Article  Google Scholar 

  14. Xie, W. L., Yang, D.: Bioresource Technol. 119, 60–65 (2012)

    Article  Google Scholar 

  15. Xie, W. L., Yang, D.: Bioresource Technol. 102, 9818–9822 (2011)

    Article  Google Scholar 

  16. Guldhe, A., Singh, P., Ansari, F. A., Singh, B., Bu, F.: Fuel 187, 180–188 (2017)

    Article  Google Scholar 

  17. Nasreen, S., Liu, H., Qureshi, L. A., Sissou, Z., Lukic, I., Skala, D.: Fuel Process. Technol. 148, 76–84 (2016)

    Article  Google Scholar 

  18. Tagusagawa, C., Takagaki, A., Iguchi, A., Takanabe, K., Kondo, J. N., Ebitani, K., Tatsumi, T., Domen, K.: Angew. Chem. Int. Ed. 49, 1128–1132 (2010)

    Article  Google Scholar 

  19. Guo, J., Zhu, S., Cen, Y., Qin, Z. F., Wang, J. G., Fan, W. B.: Appl. Catal. B. 200, 611–619 (2016)

    Article  Google Scholar 

  20. Takenaka, S., Sato, S., Takahashi, R., Sodesawa, T.: Phys. Chem. Chem. Phys. 5, 4968–4973 (2003)

    Article  Google Scholar 

  21. Takenaka, S., Takahashi, R., Sato, S., Sodesawa, T., Matsumoto, F., Yoshida, S.: Microporous Mesoporous Mater. 59, 123–131 (2003)

    Article  Google Scholar 

  22. Yin, P., Chen, W., Liu, W., Chen, H., R. j. Qu, Liu, X. G., Tang, Q. H., Xu, Q.: Bioresource Technol. 140, 146–151 (2013)

    Article  Google Scholar 

  23. Corro, G., Bañuelos, F., Vidal, E., Cebada, S.: Fuel 115, 625–628 (2014)

    Article  Google Scholar 

  24. Smith, S. M., Oopathum, C., Weeramongkhonlert, V., Smith, C. B., Chaveanghong, S., Ketwong, P., Boonyuen, S.: Bioresource Technol. 143, 686–690 (2013)

    Article  Google Scholar 

  25. J. P.C. Evangelista, Chellappa, T., A. C. F. Coriolano, Fernandes, V. J. Jr., Souza, L. D., Araujo, A. S.: Fuel Process. Technol. 104, 90–95 (2012)

    Article  Google Scholar 

  26. W. T. A. Harrison: Mater. Res. Bull. 30, 1325–1331 (1995)

    Article  Google Scholar 

  27. Kassem, M., Inorg. Mater. 42, 165–170 (2006)

    Article  Google Scholar 

  28. Zhang, Q. Y., Li, H., Liu, X. F., Qin, W. T., Zhang, Y. P., Xue, W., Yang, S.: Energy Technol. 1, 735–742 (2013)

    Article  Google Scholar 

  29. Zi, F. L., Yan, J. F., Yang, P. C., Wang, X. K., Guo, H. Y., Wu, N. Z.: J. Mater. Chem. 13, 1206–1209 (2003)

    Article  Google Scholar 

  30. Afanasiev, P., Geantet, C., Breysse, M., Coudurier, G., Vedrine, J. C.: J. Chem. Soc. Faraday Trans. 90, 193–202 (1994)

    Article  Google Scholar 

  31. Li, H., Zhang, Q. Y., Liu, J., Liu, X. F., Chang, F., Liu, Y. C., Xue, W., Yang, S.: Biomass Conv. Bioref. 4, 59–66 (2014)

    Article  Google Scholar 

  32. Kowzn, M., Umemoto, M., Kasuno, T., Tajika, M., Aihara, Y., Sugimoto, Y., Hidaka, J.: J. Jpn. Inst. Energy 85, 135–141 (2006)

    Article  Google Scholar 

  33. Xie, W. L., Wang, T.: Fuel Process. Technol. 109, 150–155 (2013)

    Article  Google Scholar 

  34. Ye, B., Li, Y. H., Qiu, F. X., Sun, C. J., Zhao, Z. Y., Ma, T., Yang, D. Y.: Korean J. Chem. Eng. 30, 1395–1402 (2013)

    Article  Google Scholar 

  35. Pan, H., Wang, J. X., Chen, L., Su, G. H., Cui, J. M., Meng, D. W., Wu, X. L.: Catal. Commun. 35, 27–31 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the joint science and technology funds of Guizhou S&T department, Anshun city people’s government and Anshun university (LH [2015]7694, LH [2016]7269, LH [2016]7278), the youth growth S&T personnel foundation of Guizhou education department (KY [2016]272), 2016 national innovative entrepreneurship training program for undergraduates (201510667020), the Dr Fund projects of Anshun University (No.Asxybsjj201511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wei, F., Ma, P. et al. Mesoporous Al–Mo Oxides as an Effective and Stable Catalyst for the Synthesis of Biodiesel from the Esterification of Free-Fatty Acids in Non-edible Oils. Waste Biomass Valor 9, 911–918 (2018). https://doi.org/10.1007/s12649-017-9865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9865-5

Keywords

Navigation