Skip to main content
Log in

Esterification of Waste Chicken Fat: Sulfonated MWCNT Toward Biodiesel Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

We used esterification/transesterification of sunflower oil (SFO) and waste chicken fat (WCF) for biodiesel (BD) production. Sulfonated multiwall carbon nanotube was used as heterogeneous acidic catalyst toward esterification of WCF before trans-esterification with potassium hydroxide. The amount of free fatty acid (FFA) for WCF could be reduced to <1 % using one-step esterification with methanol/FFA molar ratio of 30:1, solid catalyst amount of 25 % (with regarding to the weight of FFA), temperature of reactor 90 °C and reaction time of 3 h, which provide the situation for subsequently conventional transesterification via alkaline catalyst. The optimum reaction parameters of esterification and transesterification of WCF were used to BD production. Finally, transesterification of WCF has been compared with SFO to compare their biodiesel production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SFO:

Sunflower oil

WCF:

Waste chicken fat

MWCNT-SO3H:

Sulfonated multiwall carbon nanotube

FFA:

Free fatty acid

SEM:

Scanning electron microscopy

FT-IR:

Fourier transform infrared spectroscopy

References

  1. Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., Norhasyima, R.S.: Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew. Sustain. Energy Rev. 15, 3501–3515 (2011)

    Article  Google Scholar 

  2. Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Ong, H.C., Kusumo, F., Aditiya, H.B., Ghazali, N.N.N.: Schleichera oleosa L oil as feedstock for biodiesel production. Fuel 156, 63–70 (2015)

    Article  Google Scholar 

  3. Vana, B.B., Ivan, J.S., Olivera, S.S., Vlada, B.V., Yung-Tse, H.: Waste animal fats as feedstocks for biodiesel production. Renew. Sustain. Energy Rev. 32, 238–254 (2014). doi:10.1016/j.rser.2014.01.038

    Article  Google Scholar 

  4. Chia-Wei, L., Shuo-Wen, T.: Production of biodiesel from chicken wastes by various alcohol–catalyst combinations. J. energy South. Afr. 26, 36–45 (2015)

    Google Scholar 

  5. Bhatti, H.N., Hanif, M.A., Qasim, M., Rehman, A.: Biodiesel production from waste tallow. Fuel 87, 2961–2966 (2008). doi:10.1016/j.fuel.2008.04.016

    Article  Google Scholar 

  6. Ortiz-Martinez, V.M., Salar-Garcia, M.J., Palacios-Nereo, F.J., Olivares-Carrillo, P., Quesada-Medinade, J., los Rios, A.P., Hernandez-Fernandez, FJ.: In-depth study of the transesterification reaction of Pongamia pinnata oil for biodiesel production using catalyst-free supercritical methanol process. J. Supercrit. Fluids 113, 23–30 (2016). doi:10.1016/j.supflu.2016.03.009

    Article  Google Scholar 

  7. Salar-Garcia, M.J., Ortiz-Martinez, V.M., Olivares-Carrillo, P., Quesada-Medinade, J., los Rios, A.P., Hernandez-Fernandez, FJ.: Analysis of optimal conditions for biodiesel production from Jatropha oil in supercritical methanol: quantification of thermal decomposition degree and analysis of FAMEs. J. Supercrit. Fluids 112, 1–6 (2016). doi:10.1016/j.supflu.2016.02.004

    Article  Google Scholar 

  8. Mohammed, T., Ting, Z., Min, Z., Yao, C., Hongyang, L., Liuqing, Y., Xiangyang, W.: An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew. Sustain. Energy Rev. 43, 495–520 (2015). doi:10.1016/j.rser.2014.11.049

    Article  Google Scholar 

  9. Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G.: Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal. Commun. 8, 2159–2165 (2007). doi:10.1016/j.catcom.2007.04.028

    Article  Google Scholar 

  10. Zhang, Y., Dubé, M.A., McLean, D.D., Kates, M.: Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 89, 1–16 (2003). doi:10.1016/S0960-8524(03)00040-3

    Article  Google Scholar 

  11. Canakci, M., Van Gerpen, J.: Biodiesel production from oils and fats with high fatty acids. Trans. Am. Soc. Agric. Eng. 44, 1429–1436 (2001)

    Article  Google Scholar 

  12. Ramadhas, A.S., Jayaraj, S., Muraleedharan, C.: Biodiesel production from high FFA rubber seed oil. Fuel 84, 335–340 (2005). doi:10.1016/j.fuel.2004.09.016

    Article  Google Scholar 

  13. Tiwari, A.K., Kumar, A., Raheman, H.: Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31, 569–575 (2007). doi:10.1016/j.biombioe.2007.03.003

    Article  Google Scholar 

  14. Berchmans, H.J., Hirata, S.: Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 99, 1716–1721 (2008). doi:10.1016/j.biortech.2007.03.051

    Article  Google Scholar 

  15. Alptekin, E., Canakci, M.: Optimization of pretreatment reaction for methyl ester production from chicken fat. Fuel 89, 4035–4039 (2010). doi:10.1016/j.fuel.2010.04.031

    Article  Google Scholar 

  16. Freedman, B., Pryde, E.H., Mounts, T.L.: Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61, 1638–1643 (1984). doi:10.1007/BF02541649

    Article  Google Scholar 

  17. Canakci, M., Van Gerpen, J.: Biodiesel production via acid catalysis. Trans. Am. Soc. Agric. Eng. 42, 1203–1210 (1999)

    Article  Google Scholar 

  18. Macario, A., Giordano, G., Onida, B., Cocina, D., Tagarelli, A., Giuffrè, A.M.: Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. Appl. Catal. A 378, 160–168 (2010). doi:10.1016/j.apcata.2010.02.016

    Article  Google Scholar 

  19. Wang, Y., Ou, S., Liu, P., Zhang, Z.: Preparation of biodiesel from waste cooking oil ia two-step catalyzed process. Energy Convers. Manag. 48, 184–188 (2007). doi:10.1016/j.enconman.2006.04.016

    Article  Google Scholar 

  20. Marchetti, J.M., Miguel, V.U., Errazu, A.F.: Heterogeneous esterification of oil with high amount of free fatty acids. Fuel 86, 906–910 (2007). doi:10.1016/j.fuel.2006.09.006

    Article  Google Scholar 

  21. Cardoso, A.L., Neves, S.C.G., Da Silva, M.J.: Kinetic study of alcoholysis of the fatty acids catalyzed by tin chloride(II): an alternative catalyst for biodiesel production. Energy Fuel 23, 1718–1722 (2009). doi:10.1021/ef800639h

    Article  Google Scholar 

  22. Park, J., Kim, D., Lee, J.: Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst. Bioresour. Technol. 101, 62–65 (2010). doi:10.1016/j.biortech.2009.03.035

    Article  Google Scholar 

  23. Wan Omar, W.N.N., Nordin, N., Mohamed, M., Amin, M.A.S.: A two-step biodiesel production from waste cooking oil: optimization of pre-treatment step. J. Appl. Sci. 9, 3098–3103 (2009). doi:10.3923/jas.2009.3098.3103

    Article  Google Scholar 

  24. Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S.: Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A Chem. 252, 107–112 (2006). doi:10.1016/j.molcata.2006.02.047

    Article  Google Scholar 

  25. Patil, P., Deng, S., Rhodes, J.I., Lammers, P.J.: Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes. Fuel 89, 360–364 (2010). doi:10.1016/j.fuel.2009.05.024

    Article  Google Scholar 

  26. Jiang, L.Q., Gao, L.: Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles. Carbon 41, 2923–2929 (2003). doi:10.1016/S0008-6223(03)00339-7

    Article  Google Scholar 

  27. Jiang, K., Eitan, A., Schadler, L.S., Ajayan, P.M., Siegel, R.W.: Selective attachment of gold nanoparticles to nitrogen-doped carbon nantubes. Nano Lett. 3, 275–277 (2003). doi:10.1021/nl025914t

    Article  Google Scholar 

  28. Hajamini, Z., Sobati, M.A., Shahhosseini, S., Ghobadian, B.: Waste fish oil (WFO) esterification catalyzed by sulfonated activated carbon under ultrasound irradiation. Appl. Therm. Eng. 94, 141–150 (2016). doi:10.1016/j.applthermaleng.2015.10.101

    Article  Google Scholar 

  29. Shuit, S.H., Ng, E.P., Tan, S.H.: A facile and acid-free approach towards the preparation of sulphonated multi-walled carbon nanotubes as a strong protonic acid catalyst for biodiesel production. J. Taiwan Inst. Chem. Eng. 52, 100–108 (2015). doi:10.1016/j.jtice.2015.02.018

    Article  Google Scholar 

  30. Liu, K.: Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. J. Am. Oil. Chem. Soc. 71, 1179–1187 (1994). doi:10.1007/BF02540534

    Article  Google Scholar 

  31. Ghadge, S.V., Raheman, H.: Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 28, 601–605 (2005). doi:10.1016/j.biombioe.2004.11.009

    Article  Google Scholar 

  32. Ertan, A., Mustafa, C., Huseyin, S.: Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag. 34, 2146–2154 (2014). doi:10.1016/j.wasman.2014.07.019

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Islamic Azad University, Qaemshahr Branch, Iran for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shokuhi Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, A.S., Nia, M.H., Ardestani, F. et al. Esterification of Waste Chicken Fat: Sulfonated MWCNT Toward Biodiesel Production. Waste Biomass Valor 9, 591–599 (2018). https://doi.org/10.1007/s12649-016-9732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9732-9

Keywords

Navigation