Skip to main content

Advertisement

Log in

Methane Production from Hydrogen Peroxide Assisted Hydrothermal Pretreatment of Solid Fraction Sugarcane Bagasse

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

To improve the efficiency of hydrothermal pretreatment for better methane production and minimizing sugarcane bagasse recalcitrance, hydrogen peroxide was studied as an impregnation agent before hydrothermal pretreatment. Hydrothermal pretreatment was conducted employing three factors: temperature (160, 180, 200 °C), time (5, 12, 19 min) and hydrogen peroxide concentration (2, 4, 6 % v/v) by central composite design. Pretreated solid fraction resulted in a maximum of 73.1% delignification, 75.8% xylan removal besides 139.5% glucan increase. Liquid fraction was observed with 3005.63 ppm of total phenolic content, 17.7 g L−1 CODs (Soluble Chemical Oxygen Demand) along with minimal concentrations of 5-hydroxymethylfurfural (0.01–0.06 mg mL−1), furfural (00.06 mg mL−1), and acetic acid (0.11–0.58 mg mL−1). Digestion experiments resulted in 323.3 NmL g−1 TVS methane in comparison to 147.8 NmL g −1 TVS for raw bagasse. Most abundant bacterial genera identified were uncultured AUTHM297 (Thermotogales) whereas Methanosaeta were the abundant methanogenic archaeal genera. The study resulted in a 118.64% increase in methane production in comparison to raw bagasse indicating the importance of the impregnation step before hydrothermal pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fabbri, D., Torri, C.: Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 38, 167–173 (2016). https://doi.org/10.1016/j.copbio.2016.02.004

    Article  Google Scholar 

  2. Ersahin, M.E., Yangin Gomec, C., Dereli, R.K., Arikan, O., Ozturk, I.: Biomethane production as an alternative bioenergy source from codigesters treating municipal sludge and organic fraction of municipal solid wastes. J. Biomed. Biotechnol. (2011). https://doi.org/10.1155/2011/953065

    Article  Google Scholar 

  3. Hartmann, H., Angelidaki, I., Ahring, B.K.: Co-digestion of the organic fraction of municipal waste with orther waste types. In: Mata-Alvarez, J. (ed.) Biomethanization of the Organic Fraction of Municipal Solid Wastes, pp. 181–199. IWA Publishing, London (2002)

    Google Scholar 

  4. Ratti, R.P., Delforno, T.P., Sakamoto, I.K., Varesche, M.B.A.: Thermophilic hydrogen production from sugarcane bagasse pretreated by steam explosion and alkaline delignification. Int. J. Hydrogen Energy. 40(19), 6296–6306 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.067

    Article  Google Scholar 

  5. Bajpai, P.: Structure of lignocellulosic biomass. In: Pretreatment of Lignocellulosic Biomass for Biofuel Production, Springer briefs in molecular science. Springer, Cham (2016)

    Chapter  Google Scholar 

  6. Karatzos, S.K., Edye, L.A., Doherty, W.O.S.: Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics. Biotechnol. Biofuels. 5(1), 1–12 (2012). https://doi.org/10.1186/1754-6834-5-62

    Article  Google Scholar 

  7. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100(1), 10–18 (2009). https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  8. Kratky, L., Jirout, T.: Biomass size reduction machines for enhancing biogas production. Chem. Eng. Technol. 34(3), 391–399 (2011). https://doi.org/10.1002/ceat.201000357

    Article  Google Scholar 

  9. Capecchi, L., Galbe, M., Barbanti, L., Wallberg, O.: Combined ethanol and methane production using steam pretreated sugarcane bagasse. Ind. Crops Prod. 74, 255–262 (2015). https://doi.org/10.1016/j.indcrop.2015.05.016

    Article  Google Scholar 

  10. Li, H.: A comparison of liquid hot water and NaOH pretreatment on anaerobic digestion of sugar cane bagasse for biogas production. In: Proceedings of the American society of agricultural and biological engineers annual international meeting 2013, ASABE 2013, vol. 5 (2013)

  11. Jackowiak, D., Bassard, D., Pauss, A., Ribeiro, T.: Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour. Technol. 102(12), 6750–6756 (2011)

    Article  Google Scholar 

  12. Devlin, D.C., Esteves, S.R.R., Dinsdale, R.M., Guwy, A.J.: The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour. Technol. 102(5), 4076–4082 (2011). https://doi.org/10.1016/j.biortech.2010.12.043

    Article  Google Scholar 

  13. Zhu, J., Wan, C., Li, Y.: Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour. Technol. 101(19), 7523–7528 (2010). https://doi.org/10.1016/j.biortech.2010.04.060

    Article  Google Scholar 

  14. Biswas, R., Ahring, B.K.: Improving biogas yields using an innovative concept for conversion of the fiber fraction of manure. Sci. Technol. 66(8), 1751–1758 (2012)

    Google Scholar 

  15. Anna, T., Johan, Y., Magnus, L., Mohammad, J.T., Ilona Sárvári, H.: Pretreatment of paper tube residuals for improved biogas production. Bioresour. Technol. 101(4), 12061212 (2010). https://doi.org/10.1016/j.biortech.2009.09.029

    Article  Google Scholar 

  16. Gao, J., Chen, L., Yan, Z., Wang, L.: Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresour. Technol. 132, 361–364 (2013). https://doi.org/10.1016/j.biortech.2012.10.136

    Article  Google Scholar 

  17. Mackuľak, T., Prousek, J., Švorc, Ľ, Drtil, M.: Increase of biogas production from pretreated hay and leaves using wood-rotting fungi. Chem. Pap. (2012). https://doi.org/10.2478/s11696-012-0171-1

    Article  Google Scholar 

  18. Singh, S., Cheng, G., Sathitsuksanoh, N., Wu, D., Varanasi, P., George, A., Balan, V., Gao, X., Kumar, R., Dale, B.E., Wyman, C.E., Simmons, B.A.: Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front. Energy Res. (2015). https://doi.org/10.3389/fenrg.2014.00062

    Article  Google Scholar 

  19. Amin, F.R., Khalid, H., Zhang, H., Rahman, S.U., Zhang, R., Liu, G., Chen, C.: Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express. 7(1), 72 (2017). https://doi.org/10.1186/s13568-017-0375-4

    Article  Google Scholar 

  20. Jönsson, L.J., Martín, C.: Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016). https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  21. Hu, F., Ragauskas, A.: Pretreatment and lignocellulosic chemistry. Bioenergy Res. 5(4), 1043–1066 (2012). https://doi.org/10.1007/s12155-012-9208-0

    Article  Google Scholar 

  22. Yang, B., Boussaid, A., Mansfield, S.D., Gregg, D.J., Saddler, J.N.: Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol. Bioeng. 77(6), 678–684 (2002). https://doi.org/10.1002/bit.10159 doi

    Article  Google Scholar 

  23. Michalsk, K., Ledakowicz, S.: Alkaline hydrogen peroxide pretreatment of energy crops for biogas production. Chem. Pap. 68(7), 913–922 (2014). https://doi.org/10.2478/s11696-013-0531-5

    Article  Google Scholar 

  24. Kim, S.B., Um, B.H., Park, S.C.: Effect of pretreatment reagent and hydrogen peroxide on enzymatic hydrolysis of oak in percolation process. Appl. Biochem. Biotechnol. 91–93, 81–94 (2001). https://doi.org/10.1385/ABAB:91-93:1-9:81

    Article  Google Scholar 

  25. Zhao, C., Shao, Q., Li, B., Ding, W.: Comparison of hydrogen peroxide and ammonia pretreatment of corn stover: solid recovery, composition changes, and enzymatic hydrolysis. Energy Fuel. 28(10), 6392–6397 (2014). https://doi.org/10.1021/ef5013837

    Article  Google Scholar 

  26. Song, Z.L., Yag, G.H., Feng, Y.Z., Ren, G.X., Han, X.H.: Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield. J. Integ. Agric. 12(7), 12581266 (2013). https://doi.org/10.1016/S2095-3119(13)60355-X

    Article  Google Scholar 

  27. Soares, L.A., Braga, J.K., Motteran, F., Sakamoto, I.K., Monteiro, P.A.S., Seleghim, P., Varesche, M.B.A.: Bioconversion of sugarcane bagasse into value-added products by bioaugmentation of endogenous cellulolytic and fermentative communities. Waste Biomass Valorization (2018). https://doi.org/10.1007/s12649-018-0201-5

    Article  Google Scholar 

  28. APHA, AWWA, WEF: Standard Methods for the Examination of Water and Wastewater, vol. 20. American Public Health Assocition, Washington D.C (2005)

    Google Scholar 

  29. Li, Y., Merrettig-Bruns, U., Strauch, S., Kabasci, S., Chen, H.: Optimization of ammonia pretreatment of wheat straw for biogas production. J. Chem. Technol. Biotechnol. 90(1), 130–138 (2015). https://doi.org/10.1002/jctb.4297

    Article  Google Scholar 

  30. Zinder, S.H., Cardwell, S.C., Anguish, T., Lee, M., Koch, M.: Methanogenesis in a thermophilic (58 °C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47(4), 796–807 (1984)

    Article  Google Scholar 

  31. Dubourguier, H.C., Buisson, M.N., Tissier, J.P., Prensier, G., Albagnac, G.: Structural characteristics and metabolic activities of granular anaerobic sludge on a mixed defined substrate. In: Granular anaerobic sludge; microbiology and technology, Proceedings of the GASTMAT workshop, pp. 78–86. Pudoc, Netherlands (1987)

  32. Motteran, F., Braga, J.K., Sakamoto, I.K., Varesche, M.B.A.: Methanogenic potential of an anaerobic sludge in the presence of anionic and nonionic surfactants. Int. Biodeterior. Biodegrad. 96, 198–204 (2014). https://doi.org/10.1016/j.ibiod.2014.10.001

    Article  Google Scholar 

  33. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., van‘t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56(6), 1875–1881 (1990)

    Article  Google Scholar 

  34. Griffiths, R.I., Whiteley, A.S., O’Donnell, A.G., Bailey, M.J.: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66(12), 5488–5491 (2000). https://doi.org/10.1128/aem.66.12.5488-5491.2000

    Article  Google Scholar 

  35. Nubel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W., Backhaus, H.: Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178(19), 5636–5643 (1996)

    Article  Google Scholar 

  36. Kudo, Y., Nakajima, T., Miyaki, T., Oyaizu, H.: Methanogen flora of paddy soils in Japan. FEMS Microbiol. Ecol. 22(1), 39–48 (1997). https://doi.org/10.1111/j.1574-6941.1997.tb00354.x

    Article  Google Scholar 

  37. Walters, W.A., Caporaso, J.G., Lauber, C.L., Berg-Lyons, D., Fierer, N., Knight, R.: PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics. 27(8), 1159–1161 (2011). https://doi.org/10.1093/bioinformatics/btr087

    Article  Google Scholar 

  38. Bharathiraja, B., Sudharsanaa, T., Bharghavi, A., Sowmeya, G.S., Balaram, G.: Insights on lignocellulosic pretreatments for biofuel production-SEM and reduction of lignin analysis. Int. J. ChemTech Res. 6(9), 4334–4444 (2014)

    Google Scholar 

  39. Stoklosa, R.J., Hodge, D.B.: Fractionation and improved enzymatic deconstruction of hardwoods with alkaline delignification. Bioenergy Res. 8(3), 1224–1234 (2015). https://doi.org/10.1007/s12155-015-9579-0

    Article  Google Scholar 

  40. Guilherme, A.A., Dantas, P.V.F., Santos, E.S., Fernandes, F.A.N., Macedo, G.R.: Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugarcane bagasse. Braz. J. Chem. Eng. 32, 23–33 (2015)

    Article  Google Scholar 

  41. Ko, J.K., Kim, Y., Ximenes, E., Ladisch, M.R.: Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 112(2), 252–262 (2015). https://doi.org/10.1002/bit.25349

    Article  Google Scholar 

  42. Pérez, J.A., González, A., Oliva, J.M., Ballesteros, I., Manzanares, P.: Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor. J. Chem. Technol. Biotechnol. 82(10), 929–938 (2007). https://doi.org/10.1002/jctb.1765

    Article  Google Scholar 

  43. Sun, T.S., Wang, K., Yang, G., Yang, H.-Y., Xu, F.: Hydrothermal treatment and enzymatic saccharification of corncobs. Bioresources 9(2), 3000–3013 (2014)

    Article  Google Scholar 

  44. Nitsos, C.K., Matis, K.A., Triantafyllidis, K.S.: Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. Chemsuschem. 6(1), 110–122 (2013). https://doi.org/10.1002/cssc.201200546

    Article  Google Scholar 

  45. Zhao, C., Shao, Q., Ma, Z., Li, B., Zhao, X.: Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Ind. Crops Prod. 83, 86–93 (2016). https://doi.org/10.1016/j.indcrop.2015.12.018

    Article  Google Scholar 

  46. Shen, G., Tao, H., Zhao, M., Yang, O., Wen, D., Yuan, Q., Rao, G.: Effect of hydrogen peroxide pretreatment on the enzymatic hydrolysis of cellulose. J. Food Process Eng. 34(3), 905–921 (2011). https://doi.org/10.1111/j.1745-4530.2009.00518.x

    Article  Google Scholar 

  47. Studer, M.H., DeMartini, J.D., Davis, M.F., Sykes, R.W., Davison, B., Keller, M., Tuskan, G.A., Wyman, C.E.: Lignin content in natural Populus variants affects sugar release. Proc. Natl. Acad. Sci. 108(15), 6300–6305 (2011). https://doi.org/10.1073/pnas.1009252108

    Article  Google Scholar 

  48. Ahring, B.K., Biswas, R., Ahamed, A., Teller, P.J., Uellendahl, H.: Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour. Technol. 175, 182188 (2015). https://doi.org/10.1016/j.biortech.2014.10.082

    Article  Google Scholar 

  49. Kobayashi, F., Harumi, T., Chikako, A., Yoshitoshi, N.: Methane production from steam-exploded bamboo. J. Biosci. Bioeng. 97(6), 426428 (2004). https://doi.org/10.1016/S1389-1723(04)70231-5

    Article  Google Scholar 

  50. Li, H.J., Pu, Y.Q., Kumar, R., Ragauskas, A.J., Wyman, C.E.: Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol. Bioeng. 111(3), 485–492 (2014). https://doi.org/10.1002/Bit.25108

    Article  Google Scholar 

  51. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101(13), 4851–4861 (2010). https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  52. Gould, M.J.: Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol. Bioeng. 27(3), 225–231 (1985). https://doi.org/10.1002/bit.260270303

    Article  MathSciNet  Google Scholar 

  53. Kadla, J.F., Chang, H.M.: The reactions of peroxides with lignin and lignin model compounds. In: Argyropoulos, D.S. (ed.) Oxidative Delignification Chemistry, ACS symposium series, vol. 785, pp. 108–129. American Chemical Society, Washington, D.C (2001)

    Chapter  Google Scholar 

  54. Fernandez-Cegri, V., De la Rubia, M.A., Raposo, F., Borja, R.: Effect of hydrothermal pretreatment of sunflower oil cake on biomethane potential focusing on fibre composition. Bioresour. Technol. 123, 424–429 (2012). https://doi.org/10.1016/j.biortech.2012.07.111

    Article  Google Scholar 

  55. van Haandel, A.C., Lettinga, G.: Anaerobic Sewage Treatment: A Practical Guide for Regions with a Hot Climate. Wiley, Chichester (1994)

    Google Scholar 

  56. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99(10), 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  57. Mokhtari-Hosseini, Z.B., Vasheghani-Farahani, E., Heidarzadeh-Vazifekhoran, A., Shojaosadati, S.A., Karimzadeh, R., Darani, K.K.: Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour. Technol. 100(8), 2436–2443 (2009). https://doi.org/10.1016/j.biortech.2008.11.024

    Article  Google Scholar 

  58. Kumar, R., Hu, F., Sannigrahi, P., Jung, S., Ragauskas, A.J., Wyman, C.E.: Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng. 110(3), 737–753 (2013). https://doi.org/10.1002/bit.24744

    Article  Google Scholar 

  59. Li, X., Liu, Y.H., Zhang, X., Ge, C.M., Piao, R.Z., Wang, W.D., Cui, Z.J., Zhao, H.Y.: Evaluation of biogas production performance and dynamics of the microbial community in different straws. J. Microbiol. Biotechnol. 27(3), 524–534 (2017). https://doi.org/10.4014/jmb.1608.08062

    Article  Google Scholar 

  60. Zhang, Q., Tang, L., Zhang, J., Mao, Z., Jiang, L.: Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues. Bioresour. Technol. 102(4), 3958–3965 (2011). https://doi.org/10.1016/j.biortech.2010.12.031

    Article  Google Scholar 

  61. Parawira, W., Murto, M., Read, J.S., Mattiasson, B.: Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J. Chem. Technol. Biotechnol. 79, 673–677 (2004)

    Article  Google Scholar 

  62. Ye, R., Jin, Q., Bohannan, B., Keller, J.K., Bridgham, S.D.: Homoacetogenesis: a potentially underappreciated carbon pathway in peatlands. Soil Biol. Biochem. 68, 385–391 (2014). https://doi.org/10.1016/j.soilbio.2013.10.020

    Article  Google Scholar 

  63. Kayembe, K., Basosila, L., Mpiana, P.T., Sikulisimwa, P.C., Mbuyu, K.: Inhibitory effects of phenolic monomers on methanogenesis in anaerobic digestion. Br. Microbiol. Res. J. 3, 32–41 (2013)

    Article  Google Scholar 

  64. Saady, N.M.C.: Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int. J. Hydrogen Energy. 38(30), 13172–13191 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.122

    Article  Google Scholar 

  65. Magurran, A.E.: Measuring Biological Diversity. Blackwell Publishing Company, New York (2004)

    Google Scholar 

  66. Koga, Y.: Early evolution of membrane lipids: how did the lipid divide occur? J. Mol. Evol. 72(3), 274–282 (2011). https://doi.org/10.1007/s00239-011-9428-5

    Article  Google Scholar 

  67. Koga, Y.: Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea. 2012, 789652 (2012). https://doi.org/10.1155/2012/789652

    Article  Google Scholar 

  68. Morrison, M., Miron, J.: Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins?1. FEMS Microbiol. Lett. 185(2), 109–115 (2000). https://doi.org/10.1016/S0378-1097(00)00040-9

    Article  Google Scholar 

  69. Narihiro, T., Terada, T., Ohashi, A., Kamagata, Y., Nakamura, K., Sekiguchi, Y.: Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. Water Res. (2012). https://doi.org/10.1016/j.watres.2012.01.034

    Article  Google Scholar 

  70. Li, L., He, Q., Ma, Y., Wang, X., Peng, X.: A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing. Microb. Cell Fact. 15(1), 65 (2016). https://doi.org/10.1186/s12934-016-0466-y

    Article  Google Scholar 

  71. Balk, M., Weijma, J., Stams, A.J.: Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 52(Pt 4), 1361–1368 (2002). https://doi.org/10.1099/00207713-52-4-1361

    Article  Google Scholar 

  72. Klocke, M., Mähnert, P., Mundt, K., Souidi, K., Linke, B.: Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst. Appl. Microbiol. 30(2), 139–151 (2007). https://doi.org/10.1016/j.syapm.2006.03.007

    Article  Google Scholar 

  73. Kröber, M., Bekel, T., Diaz, N.N., Goesmann, A., Jaenicke, S., Krause, L., Miller, D., Runte, K.J., Viehöver, P., Pühler, A., Schlüter, A.: Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J. Biotechnol. 142(1), 38–49 (2009). https://doi.org/10.1016/j.jbiotec.2009.02.010

    Article  Google Scholar 

  74. Fontes, C.M.G.A., Gilbert, H.J.: Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79, 655–681 (2010)

    Article  Google Scholar 

  75. Hattori, S., Kamagata, Y., Hanada, S., Shoun, H.: Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 50(4), 1601–1609 (2000). https://doi.org/10.1099/00207713-50-4-1601 doi

    Article  Google Scholar 

  76. Westerholm, M., Roos, S., Schnürer, A.: Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst. Appl. Microbiol. 34(4), 260–266 (2011). https://doi.org/10.1016/j.syapm.2010.11.018

    Article  Google Scholar 

  77. Lee, S.-H., Park, J.-H., Kim, S.-H., Yu, B.J., Yoon, J.-J., Park, H.-D.: Evidence of syntrophic acetate oxidation by Spirochaetes during anaerobic methane production. Bioresour. Technol. 190, 543–549 (2015). https://doi.org/10.1016/j.biortech.2015.02.066

    Article  Google Scholar 

  78. Ju, F., Zhang, T.: Novel microbial populations in ambient and mesophilic biogas-producing and phenol-degrading consortia unraveled by high-throughput sequencing. Microb. Ecol. 68(2), 235–246 (2014). https://doi.org/10.1007/s00248-014-0405-6

    Article  Google Scholar 

  79. Esquivel-Elizondo, S., Parameswaran, P., Delgado, A.G., Maldonado, J., Rittmann, B.E., Krajmalnik-Brown, R.: Archaea and bacteria acclimate to high total ammonia in a methanogenic reactor treating swine waste. Archaea. 2016, 10 (2016). https://doi.org/10.1155/2016/4089684

    Article  Google Scholar 

  80. Wong, M.T., Wang, W., Lacourt, M., Couturier, M., Edwards, E.A., Master, E.R.: Substrate-driven convergence of the microbial community in lignocellulose-amended enrichments of gut microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus). Front. Microbiol. 7, 961 (2016). https://doi.org/10.3389/fmicb.2016.00961

    Article  Google Scholar 

  81. Pelletier, E., Kreimeyer, A., Bocs, S., Rouy, Z., Gyapay, G., Chouari, R., Riviere, D., Ganesan, A., Daegelen, P., Sghir, A., Cohen, G.N., Medigue, C., Weissenbach, J., Le Paslier, D.: “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J. Bacteriol. 190(7), 2572–2579 (2008). https://doi.org/10.1128/jb.01248-07

    Article  Google Scholar 

  82. Boone, D.R.: Methanobacterium. In: Whitman, W.B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B., Dedysh, S. (eds.) Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley, New York (2015). https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9781118960608.gbm00495

  83. Sun, L., Pope, P.B., Eijsink, V.G.H., Schnürer, A.: Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb. Biotechnol. 8(5), 815–827 (2015). https://doi.org/10.1111/1751-7915.12298

    Article  Google Scholar 

  84. Fu, S.-F., Wang, F., Shi, X.-S., Guo, R.-B.: Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure. Chem. Eng. J. 287, 523–528 (2016). https://doi.org/10.1016/j.cej.2015.11.070

    Article  Google Scholar 

Download references

Funding

This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ministry of Education, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fiaz Ahmad or Maria Bernadete Amâncio Varesche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Sakamoto, I.K., Adorno, M.A.T. et al. Methane Production from Hydrogen Peroxide Assisted Hydrothermal Pretreatment of Solid Fraction Sugarcane Bagasse. Waste Biomass Valor 11, 31–50 (2020). https://doi.org/10.1007/s12649-018-0452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0452-1

Keywords

Navigation