Skip to main content

Advertisement

Log in

Silica–Calcareous Non Fired Bricks Made of Biomass Ash and Dust Filter from Gases Purification

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

From the point of view of saving and conservation of natural resources, the use of alternative components in construction materials is now an international concern. In this work, the valorization of two industrial wastes with no value in the market, biomass ash and exhaust dust filter from gases purification raw materials for the production of sustainable silica–calcareous units by the method of cementation was studied. After characterization of the raw materials, bricks were manufactured by mixing different ratios of residues, biomass ash (100−50 wt%) and dust filter (0–50 wt%) formed by pressure at 10 MPa and cured in water at room temperature for 28 days. The results indicate that as the dust filter content increases, the bulk density and mechanical strength of the silica–calcareous units decrease due to the lower density and high carbonation of the filter dust residue and the higher proportion of cement-based products formed in the pozzolanic reaction. Bricks containing 90 wt% of biomass ash-10 wt% of dust filter meet the criteria established by the regulations with an apparent density of 1471 kg/m3, water absorption of 24.2%, a compressive strength of 18.2 MPa and a thermal conductivity of 0.48 W/mK. In addition, the concentration of heavy metals obtained by leaching of the silica–calcareous ecobricks did not exceed the limits established by EPA 658/2009.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Decision No 1386/2013/EU of the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Programme to 2020 Living well, within the limits of our planet. Text with EEA relevance. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013D1386

  2. Ericsson, E.: (2007) Co-firing—a strategy for bioenergy in Poland. Energy 32:1838–1847 (2007)

    Article  Google Scholar 

  3. Farmer, V.C.: The infrared spectra of minerals. Monograph 4, p. 539. Mineralogical Society, London (1974)

    Book  Google Scholar 

  4. Gorazda, K., Tarko, B., Wzoreka, Z., Kominkoa, H., Nowaka, A. K., Kulczyckab, J., Henclikc, A., Smol, M.: Fertilisers production from ashes after sewage sludge combustion—a strategy towards sustainable development. Environ. Res. 154, 171–180 (2017)

    Article  Google Scholar 

  5. Park, S., Song, K., &Wan Jeon, C.: Study of mineral recovery from waste ashes at an incineration facility using the mineral carbonation method. Int. J. Miner. Process. 155, 1–5 (2016)

    Article  Google Scholar 

  6. Quirantes, M., Nogales, R., Romero, E.: Sorption potential of different biomass fly ashes for the removal of diuron and 3,4-dichloroaniline from water. J. Hazard. Mat. 331, 300–308 (2017)

    Article  Google Scholar 

  7. González-kunz, R. N., Pineda, P., Bras, A., Morillas, L.: Plant biomass ashes in cement-based building materials. Feasibility as eco-efficient structural mortars and grouts. Sustain. Cities Soc. 31, 151–172 (2017)

    Article  Google Scholar 

  8. Siddique, R.K.: Utilization of industrial by-products and natural ashes in mortar and concrete: development of sustaible construction materials. In: Harries, K.A., Bhavna, S. (eds.) Non Conventional Vernacular Construction Materials, Characterisation, Properties and Application, pp. 159–204. Elsevier (2016)

  9. Nkuna, C.N., Oboirien, B.O., Sadiku, E.R., Lekitima, J.: A comparative study of geopolymers synthesized from OXY-combustion and chemical looping combustion bottom ashes. Constr. Build. Mater. 136, 246–255 (2017)

    Article  Google Scholar 

  10. Setyowati, E.: Eco-building material of styrofoam waste and sugar industry fly-ash based on nano-technology. Proced. Environ. Sci. 20, 245–253 (2014)

    Article  Google Scholar 

  11. ASTM C 67–03: Standards tests method for sampling and testing bricks and structural clay tile. American Sociaty for Testing and Material, West Conshohocken (2003)

  12. Cebrian, J.L.: Determinación de la superficie específica por el método Blaine en cenizas volantes y cementos puzolánicos. Mater. Constr. 142(21), 81–91 (1971)

    Article  Google Scholar 

  13. Thompson, P., Cox, D.E., Hasting, J.B.: Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 20, 79–83 (1987)

    Article  Google Scholar 

  14. Dollase, W. A.: Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272 (1986)

    Article  Google Scholar 

  15. De la Torre, A. G., Bruque, S., Aranda, M. A. G: Rietveld quantitative amorphous content analysis. J. Appl. Cryst. 34, 196–202 (2001)

    Article  Google Scholar 

  16. Aranda, M. A. G., De la Torre, A. G., León-Reina, L. Rietveld quantitative phase analysis of 23 OPC clinkers, cements and hydration products. Rev. Mineral. Geochem. 74, 169–209 (2012)

    Article  Google Scholar 

  17. UNE-EN 12390-2: Testing hardened concrete-Part 2: Making and curing specimens for strength tests (2009)

  18. 772–16, UNE-EN: Methods of test for masonry units—Part 16: determination of dimensions (2011)

  19. 772–21, UNE-EN: Methods of test for masonry units—Part 21: determination of water absorption of clay and calcium silicate masonry units by cold water absorption (2001)

  20. UNE-EN 772-1: Methods of test for masonry units—part 1: determination of compressive strength (2011)

  21. U.S. Environmental Protection Agency.: Method 13–11 toxicity characteristics leaching procedure (TCLP). 51. Federal Register, Washington, D.C., pp. 11798–11877 (1992)

    Google Scholar 

  22. Filipponi, P., Polettini, A., Pomi, R., Sirini, P.: Physical and mechanical properties of cement-based products containing incineration bottom ash. Waste Manag. 23, 145–156 (2003)

    Article  Google Scholar 

  23. Agarwal, S.K.: :Pozzolanic activity of various siliceous materials. Ce.m Concr. Res. 36, 1735–1739 (2006)

    Article  Google Scholar 

  24. Demirbas, A.: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31, 171–192 (2005)

    Article  Google Scholar 

  25. Suherman, P.M., van Riessen, A., O’Connor, B., Li, D., Bolton, D., Fairhurst, H.: Determination of amorphous phase levels in Portland cement clinker. Powder Diffract. 17, 178–185 (2002)

    Article  Google Scholar 

  26. García-Calvo, J.L., Hidalgo, A., Alonso, M.C., Luxán, M.P., Fernández-Luco, L.: Valorización de cenizas de fondo de biomasa. Viabilidad de uso como materiales de construcción. Libro de actas del XI Congreso Nacional de Materiales, Sociemat (2010)

    Google Scholar 

  27. Skibsted, J., Morten, D., Andersen, A.: The effect of alkali ions on the incorporation of aluminum in the calcium silicate Hydrate (C–S–H) phase resulting from portland cement hydration studied by 29Si MAS NMR. J. Am. Ceram. Soc. 96, 651–656 (2013)

    Google Scholar 

  28. Allali, F., Joussein, F., Idrissi Kandri, E., Rossignol, N.: The influence of calcium content on the mixture of sodium silicate with different additives: Na2CO3, NaOH and AlO(OH). Constr. Build. Mater. 121, 588–598 (2016)

    Article  Google Scholar 

  29. Tobón, J.I., Payá, J.J., Borrachero, M.V., Restrepo, O.J.: Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Constr. Build. Mater. 36, 736–742 (2012)

    Article  Google Scholar 

  30. RL-88: Pliego general de condiciones para la recepción de ladrillos cerámicos en las obras de construcción (2004)

  31. Elert, K., Cultrone, G.: Durability of bricks used in the conservation of historic buildings-influence of composition and microstructure. J. Cult. Herit. 4(2), 91–99 (2003)

    Article  Google Scholar 

  32. ASTM C67-07 a: 2003:Standard test methods for sampling and testing brick and structural clay tile. American Society for Testing and Materials, Philadelphia (2003)

    Google Scholar 

  33. Turgut, P.: Manufacturing of building bricks without Portland cement. J. Cleaner Prod. 37, 361–367 (2012)

    Article  Google Scholar 

  34. Mindess, S., Young, J. F., Darwin, D.: Concrete. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  35. Madurwar, M., Mandavgane, S., Ralegaonkar, R.: Development of feasibility analysis of bagasse ash bricks. J. Energy Eng. (2015). doi:10.1061/(ASCE)EY.1943-7897.0000200 (CID: 0401402, 66)

    Google Scholar 

  36. Taylor, HFW: Cement chemistry, 2nd edn. Thomas Telford, London (1997)

    Book  Google Scholar 

  37. Carrasco-Hurtado, B., Corpas-Iglesias, F.A., Cruz-Pérez, N., Terrados-Cepeda, J., Perez-Villarejo, L.: Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties. Constr. Build. Mater. 52, 155–165 (2014)

    Article  Google Scholar 

  38. Olmeda, J., Sánchez de Rojas, M.I., Frías, M., Donatello, S., Cheeseman, C.R.: Effect of petroleum (pet) coke addition on the density and thermal conductivity of cement pastes and mortars. Fuel. 107, 138–146 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Project “Valuation of various types of ash for the obtaining of new sustainable ceramic materials” (UJA2014/06/13), Own Plan University of Jaen, sponsored by Caja Rural of Jaen. Technical and human support provided by CICT of Universidad de Jaén (UJA, MINECO, Junta de Andalucía, FEDER) is gratefully acknowledged. A.I.M. thanks the Ministry of Economy and Competitiveness for a Ramón y Cajal contract (RyC2015-17870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Eliche-Quesada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliche-Quesada, D., Sánchez-Martínez, J., Felipe-Sesé, M.A. et al. Silica–Calcareous Non Fired Bricks Made of Biomass Ash and Dust Filter from Gases Purification. Waste Biomass Valor 10, 417–431 (2019). https://doi.org/10.1007/s12649-017-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0056-1

Keywords

Navigation