Skip to main content
Log in

Optimization of Cellulase Production by Trichoderma Strains Using Crude Glycerol as a Primary Carbon Source with a 24 Full Factorial Design

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work focuses on the optimization of cellulase production by two Trichoderma strains. A 24 full factorial design was used to evaluate the effects of four factors in the optimization of cellulase production (filter paper assay—FPA): crude glycerol, microcrystalline cellulose, yeast extract and ammonium sulfate. In fermentation with Trichoderma CMIAT 054 strain the largest FPA (138.48 FPU L−1) occurred with 25.0 g L−1 of cellulose, 10.0 g L−1 of crude glycerol, 1.4 g L− 1 of yeast extract and 3.5 g L− 1 of ammonium sulfate in the culture medium. In tests with Trichoderma CMIAT 041 strain the highest FPA (89.35 FPU L−1) occurred with 25.0 g L−1 of cellulose, 20.0 g L−1 of crude glycerol, 0.6 g L−1 of yeast extract and 1.5 g L−1 of ammonium sulfate in the culture medium. ANOVA showed a correlation coefficient of 93 and 88% for Trichoderma CMIAT 054 and CMIAT 041 strains, respectively. Reduced regression models for the cellulase produced by these strains were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramkumar, S., Kirubakaran, V.: Biodiesel from vegetable oil as alternate fuel for C.I engine and feasibility study of thermal cracking: a critical review. Energy Convers. Manage. 118, 155–169 (2016)

    Article  Google Scholar 

  2. Skorupskaite, V., Makareviciene, V., Gumbyte, M.: Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: a review. Fuel Process. Technol. 150, 78–87 (2016)

    Article  Google Scholar 

  3. Quispe, C. A. G., Coronado, C. J. R., Carvalho, J. R. J. A.: Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27, 475–493 (2013)

    Article  Google Scholar 

  4. Ayoub, M., Abdullah, A. Z.: Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 16, 2671–2686 (2012)

    Article  Google Scholar 

  5. Garlapati, V. K., Shankar, U., Budhiraja, A.: Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol. Rep. 9, 9–14 (2016)

    Article  Google Scholar 

  6. Tan, H. W., Abdul Aziz, A. R., Aroua, M. K.: Glycerol production and its applications as a raw material: a review. Renew Sustain. Energy Rev. 27, 118–127 (2013)

    Article  Google Scholar 

  7. Yang, F., Hanna, M. A., Sun, R.: Value-added uses for crude glycerol: a byproduct of biodiesel production. Biotechnol. Biofuels, 5 (13) (2012)

  8. Rodriguez, A., Wojtusik, M., Ripoll, V., Santos, V. E., Garcia–Ochoa, F.: 1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: operational conditions and kinetics in batch cultivations. Bioresour. Technol. 200, 830–837 (2016)

    Article  Google Scholar 

  9. Silva, G. P., Lima, C. J. B., Contiero, J.: Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catal. Today. 257, 259–266 (2015)

    Article  Google Scholar 

  10. Pflügl, S., Marx, H., Mattanovich, D., Sauer, M.: Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Biores. Technol. 152, 499–504 (2014)

    Article  Google Scholar 

  11. Viveka, N., Pandeya, A., Binoda, P.: Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresour. Technol. 213, 222–230 (2016)

    Article  Google Scholar 

  12. Cutzu, R., Coi, A., Rosso, F., Bardi, L., Ciani, M., Budroni, M., Zara, G., Zara, S., Mannazzu, I.: From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J. Microbiol. Biotechnol. 29(6), 1009–1017 (2013)

    Article  Google Scholar 

  13. Feng, X., Walker, T. H., Bridges, W. C., Thornton, C., Gopalakrishnan, K.: Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Biores. Technol. 166, 17–23 (2014)

    Article  Google Scholar 

  14. Petrik, S., Marova, I., Haronikova, A., Kostovova, I., Breierova, E.: Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production: a comparative screening study. Ann Microbiol. 63, 1537–1551 (2013)

    Article  Google Scholar 

  15. Polburee, P., Yongmanitchai, W., Lertwattanasakul, N., Ohashi, T., Fujiyama, K., Limtong, S.: Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol. 119 (12), 1194–1204 (2015)

    Article  Google Scholar 

  16. Taccari, M., Canonico, L., Comitini, F., Mannazzu, I., Ciani, M.: Screening of yeasts for growth on crude glycerol and optimization of biomass production. Biores. Technol. 110, 488–495 (2012)

    Article  Google Scholar 

  17. Valduga, E., Ribeiro, A. H. R., Cence, K., Colet, R., Tiggemann, L., Zeni, J., Toniazzo, G.: Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. Biocatal. Agric. Biotechnol. 3, 207–213 (2014)

    Google Scholar 

  18. Yen, H.W., Chang, J.T., Chang, J.S.: The growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using mixture substrates of rice straw hydrolysate and crude glycerol. Biomass Bioenerg. 80, 38–43 (2015)

    Article  Google Scholar 

  19. Yen, H.W., Yang, Y.C., Yu, Y.H.: Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis. J. Biosci. Bioeng. 114(4), 453–456 (2011)

    Article  Google Scholar 

  20. García-Fraile, P., Silva, L. R., Sánchez-Márquez, S., Velázquez, E., Rivas, R.: Plums (Prunus domestica L.) are a good source of yeasts producing organic acids of industrial interest from glycerol. Food Chem. 139, 31–34 (2013)

    Article  Google Scholar 

  21. Morgunov, I. G., Kamzolova, S. V., Lunina, J. N.: The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl. Microbiol. Biotechnol. 197, 7387–7397 (2013)

    Article  Google Scholar 

  22. Zhou, Y., Nie, K., Zhang, X., Liu, S., Wang, M., Deng, L., Wang, F., Tan, T.: Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus. Bioresour. Technol. 163, 48–53 (2014)

    Article  Google Scholar 

  23. Pirog, T., Shulyakova, M., Sofilkanych, A., Shevchuk, T., Mashchenko, O.: Biosurfactant synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMVB-7241 and Nocardia vaccinii IMV B-7405 on by product of biodiesel production. Food Bioprod. Process. 93, 11–18 (2015)

    Article  Google Scholar 

  24. Silva, N. M. P. R., Rufino, R. D., Luna, J. M., Santos, V. A., Sarubbo, L. A.: Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal. Agric. Biotechnol. 3, 132–139 (2014)

    Google Scholar 

  25. Chookaew, T., O-Thong, S., Prasertsan, P.: Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. Int. J. Hydrog. Energy 40(24), 7433–7438 (2015)

    Article  Google Scholar 

  26. Dounavis, A. S., Ntaikou, I., Lyberatos, G.: Production of biohydrogen from crude glycerol in an upflow column bioreactor. Biores. Technol. 198, 701–708 (2015)

    Article  Google Scholar 

  27. Gallardo, R., Alves, M., Rodrigues, L. R.: Modulation of crude glycerol fermentation by Clostridium pasteurianum DSM 525 towards the production of butanol. Biomass Bioenerg. 71, 134–143 (2014)

    Article  Google Scholar 

  28. Khanna, S., Goyal, A., Moholkar, V. S.: Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite. Fuel 112, 557–561 (2013)

    Article  Google Scholar 

  29. Yadav, S., Rawat, G., Tripathi, P., Saxena, R. K.: A novel approach for biobutanol production by Clostridium acetobutylicum using glycerol: a low cost substrate. Renew. Energ. 71, 37–42 (2014)

    Article  Google Scholar 

  30. Hu, Z. C., Zheng, Y. G., Shen, Y. C.: Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. Biores. Technol. 102, 7177–7182 (2011)

    Article  Google Scholar 

  31. Liu, Y. P., Sun, Y., Tan, C., Li, H., Zheng, X. J., Jin, K. Q., Wang, G.: Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii. Biores. Technol. 142, 384–389 (2013)

    Article  Google Scholar 

  32. Kumar, P., Ray, S., Patel, S. K. S., Lee, J. K., Kalia, V. C.: Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int. J. Biol. Macromol. 78, 9–16 (2015)

    Article  Google Scholar 

  33. Moreno, P., Yañez, C., Cardozo, N. S. M., Escalante, H., Combariza, M. Y., Guzman, C.: Influence of nutritional and physicochemical variables on PHB production from raw glycerol obtained from a Colombian biodiesel plant by a wild-type Bacillus megaterium strain. N. Biotechnol. 32(6), 682–689 (2015)

    Article  Google Scholar 

  34. Zhang, X., Zhang, Y. P.: Cellulases: characteristics, sources, production, and applications. In: Yang, S., El-Ensashy, H., Thongchul, N.. (eds.) Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, pp.131–146. Wiley, New Jersey (2013)

    Chapter  Google Scholar 

  35. Bhat, M.K.: Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18, 355–383 (2000)

    Article  Google Scholar 

  36. Paloheimo, M., Haarmann, T., Mäkinen, S., Vehmaanperä, J.: Production of Industrial Enzymes in Trichoderma reesei. In: Schmoll, M., Dattenböck, C.. (eds.) Gene Expression Systems in Fungi: Advancements and Applications, pp. 23–57. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  37. Anwara, Z., Gulfraz, M., Irshada, M.: Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiat. Res. Appl. Sci. 7(2), 163–173 (2014)

    Article  Google Scholar 

  38. Rocha, V. A. L., Maeda, R. N., Santa Anna, L. M. M., Pereira, N.: Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium. Electron. J. Biotechnol. 16(5), 1–13 (2013)

    Article  Google Scholar 

  39. Xiong, L., Huang, C., Peng, W., Tang, L., Yang, X., Chen, X., Chen, X., Ma, L., Chen, Y.: Efficient cellulase production from low-cost substrates by Trichoderma reesei and its application on the enzymatic hydrolysis of corncob. Afr. J. Microbiol. Res. 7(43), 5018–5024 (2013)

    Article  Google Scholar 

  40. Omojasola, P. F., Jilani, O. P.: Cellulase production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae cultured on waste materials from orange. Pak. J. Biol. Sci. 11(20), 2382–2388 (2008)

    Article  Google Scholar 

  41. Liming, X., Xueliang, S.: High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour. Technol. 91, 259–262 (2004)

    Article  Google Scholar 

  42. Ilmén, M., Saloheimo, A., Onnela, M.-L., Pen ttilä, M.E.: Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63(4), 1298–1306 (1997)

    Google Scholar 

  43. Lo, C.M., Ju, L.K.: Sophorolipids-induced cellulase production in cocultures of Hypocrea jecorina Rut C30 and Candida bombicola. Enzyme Microb. Technol. 44(2), 107–111 (2009)

    Article  Google Scholar 

  44. Vaheri, M.P., Vaheri, M.E.O., Kauppinen, V.S.: Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol. Eur. J. Appl. Microbiol. 8, 73–80 (1979)

    Article  Google Scholar 

  45. Delabona, P. S., Farinas, C. S., Silva, M. R., Azzoni, S. F., Pradella, J.G. C.: Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour. Technol. 107, 517–521 (2012)

    Article  Google Scholar 

  46. Delabona, P. S., Lima, D. J., Robl, D., Rabelo, S. C., Farinas, C. S., Pradella, J. G. C.: Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J. Ind. Microbiol. Biotechnol. 43, 617–626 (2016)

    Article  Google Scholar 

  47. Mandels, M., Weber, J.: The production of cellulases. Adv. Chem. Ser. 95, 391–414 (1969)

    Article  Google Scholar 

  48. Farid, M. A., El-Shahed, K. Y.: Cellulase production on high levels of cellulose and corn steep liquor. Zentralbl. Mikrobiol. 148, 277–283 (1993)

    Google Scholar 

  49. Ghose, T. K., Sahai, V.: Production of cellulases by Trichoderma reesei QM 9414 in fed-batch and continuous-flow culture with cell recycle. Biotechnol. Bioeng. 21(2), 283–296 (1979)

    Article  Google Scholar 

  50. Sternberg, D., Dorval, S.: Cellulase production and ammonium metabolism in Trichoderma reesei on high levels of cellulose. Biotechnol. Bioeng. 21, 181–191 (1979)

    Article  Google Scholar 

  51. Myers, R. H., Montgomery, D. C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, New York (2002)

    MATH  Google Scholar 

  52. Baş, D., Boyaci, I. H.: Modeling and optimization I: usability of response surface methodology. J. Food Eng. 78(3), 836–845 (2007)

    Article  Google Scholar 

  53. Ghose, T. K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Google Scholar 

  54. Miller, G. L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  55. Sousa, K. A., Faheina Junior, G. S., Lima, K. T. L., Pinto, G. A. S., Aguiar, R. S. S. Azevedo, D. C. S.: Evaluation of the use of raw glycerol in biomass production by Trichoderma reesei QM9414. BMC Proc. 8(Suppl 4), P173 (2014)

    Article  Google Scholar 

  56. Rumbold, K., Van Buijsen, H. J. J., Overkamp, K. M., Van Groenstijn, J. W., Punt, P. J., Van der Werf, M. J.: Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb. Cell Fact. 8, 64 (2009)

    Article  Google Scholar 

  57. Wu, G., He, R., Jia, W., Chao, Y., Chen, S.: Strain improvement and process optimization of Trichoderma reesei Rut C30 for enhanced cellulase production. Biofuels 2(5), 545–555 (2011)

    Article  Google Scholar 

  58. Rodriguez-Gomez, D., Hobley, T. J.: Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30. World J. Microb. Biot. 29(11), 2157–2165 (2013)

    Article  Google Scholar 

  59. Ryu, D. Y., Mandels, M.: Cellulases: biosynthesis and applications. Enzyme Microb. Technol. 2, 91–102 (1980)

    Article  Google Scholar 

  60. Domingues, F. C., Queiroz, J. A., Cabral, J. M. S., Fonseca, L. P.: The influence of culture conditions on mycelial structure and cellulose production by Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 26, 394–401 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordination for the Upgrading of Higher Education Personnel (CAPES, Brazil)—Project AUXPE PNPD 2491/2009. Thanks are also due to the Foundation for Support in Scientific and Technological Development (FUNCAP) of the state of Ceará, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kally Alves de Sousa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, K.A., da Faheina Junior, G.S., de Azevedo, D.C.S. et al. Optimization of Cellulase Production by Trichoderma Strains Using Crude Glycerol as a Primary Carbon Source with a 24 Full Factorial Design. Waste Biomass Valor 9, 357–367 (2018). https://doi.org/10.1007/s12649-016-9806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9806-8

Keywords

Navigation