Skip to main content
Log in

Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper we revisit a 3D autonomous chaotic system, which contains both the modified Lorenz system and the conjugate Chen system, presented in [Huang and Yang, Chaos Solitons Fractals 39:567–578, 2009]. First by citing two examples to show the errors and limitations for the local stability of the equilibrium point S + obtained in this literature, we formulate a complete determining criterion for the local stability of S + of this system. Although the local bifurcation problem of this system, mainly for Hopf bifurcation, etc., has been studied, the invoking of incorrect proposition leads to an incorrect result for Hopf bifurcation. We then renew the study of the Hopf bifurcation of this system by utilizing the Project Method. The global bifurcation problem, relatively speaking, should be more difficult than the local bifurcation problem for a given system. However, the global bifurcation problem of this system, to the best of our knowledge, has not been investigated yet in the literatures. So next we consider the global bifurcation problem for this system, mainly for the existence of homoclinic and heteroclinic orbits. Our results, one of which shows the existence of two heteroclinic orbits, not only correct and further supplement the ones obtained in the literature, but also give something new to theoretically help fully understand the occurrence of chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Sparrow, C.: The Lorenz Equations: Bifurcation, Chaos, and Strange Attractor. Springer, New York (1982)

    Book  Google Scholar 

  3. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)

    Article  MATH  Google Scholar 

  5. Čelikovský, S., Chen, G.: On a generalized Lorenz canonical form of chaotic systems. Int. J. Bifurc. Chaos 12, 1789–1812 (2002)

    Article  MATH  Google Scholar 

  6. Liu, Y., Yang, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal., Real World Appl. 11, 2563–2572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chua, L.O., Itoh, M., Kovurev, L., Eckert, K.: Chaos synchronization in Chua’scircuits. J. Circuits Syst. Comput. 3, 2561–2574 (1993)

    Article  Google Scholar 

  8. Yang, Q., Chen, G., Zhou, Y.: A unified Lorenz-type system and its canical form. Int. J. Bifurc. Chaos 16, 2855–2871 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, Q., Chen, G.: A chaotic system with one saddle and its canonical form. Int. J. Bifurc. Chaos 18, 1393–1414 (2008)

    Article  MATH  Google Scholar 

  10. Vaĕc̆ek, A., Čelikovský, S.: Control System: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London (1996)

    Google Scholar 

  11. Čelikovský, S., Chen, G.: On the generalized Lorenz canonical form. Chaos Solitons Fractals 26, 1271–1276 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, K., Yang, G.: Stability and Hopf bifurcation analysis of a new system. Chaos Solitons Fractals 39, 567–578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  14. Silva, C.P.: Shil’nikov’s theorem—a tutorial. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40, 675–682 (1993)

    Article  MATH  Google Scholar 

  15. Vanderschrier, G., Maas, L.: The diffusionless Lorenz equations: Shilnikov bifurcations and reduction to an explicit map. Physica D 141, 19–36 (2000)

    Article  MathSciNet  Google Scholar 

  16. Mees, A.I., Chapman, P.B.: Homoclinic and hetroclinic orbits in the double scroll attractor. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 34, 1115–1120 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Li, T., Chen, G.: On homoclinic and hetroclinic orbits of the Chen’s system. Int. J. Bifurc. Chaos 16, 3035–3041 (2006)

    Article  MATH  Google Scholar 

  18. Tigan, G., Constantinescu, D.: Heteroclinic orbits in the T and the Lü system. Chaos Solitons Fractals 42, 20–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X., Wang, H.: Homoclinic and heteroclinic orbits and bifurcations of a new Lorenz-type system. Int. J. Bifurc. Chaos 21, 2695–2712 (2011)

    Article  MATH  Google Scholar 

  20. Li, X., Ou, Q.: Dynamical properties and simulation of a new Lorenz-like chaotic system. Nonlinear Dyn. 65, 255–270 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly supported by NNSF of China (grant: 10771094), and the Natural Science Foundation of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Wang, P. Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system. Nonlinear Dyn 73, 621–632 (2013). https://doi.org/10.1007/s11071-013-0815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0815-x

Keywords

Navigation