Skip to main content
Log in

On singular orbits and a given conjecture for a 3D Lorenz-like system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We revisit a 3D chaotic system in Dias et al. (Nonlinear Anal Real World Appl 11(5): 3491–3500, 2010) and mainly consider its singular orbits not yet investigated: homoclinic and heteroclinic orbits and singularly degenerate heteroclinic cycles. We first consider the existence of homoclinic and heteroclinic orbits. Our results, one of which shows the existence of two heteroclinic orbits for \(c \ge 2a > 0\) and \(b > 0\), not only further supplement the ones obtained in this literature, but also give something new to theoretically helpfully understand the occurrence of chaos. Further, numerical simulations show that this system has not only two heteroclinic orbits for \(a \le c < 2a, b > 0\) or \(a > c > 0\) and some \( b_{0} \in (0, \frac{a+c}{a-c})\), but also chaotic attractor when heteroclinic orbits disappear. Then, by utilizing a known conclusion, we demonstrate the existence of singularly degenerate heteroclinic cycles in this system. Combining analytical and numerical techniques, it is shown that for the parameter value \(c = 0\) the system presents an infinite set of singularly degenerate heteroclinic cycles, which completely solves a conjecture presented in the above literature for the existence of infinitely many singularly degenerate heteroclinic cycles in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  2. Sparrow, C.: The Lorenz equations: bifurcation, chaos, and strange attractor. Springer, New York (1982)

    Google Scholar 

  3. Ottino, J.M., Leong, C.W., Rising, H., Swanson, P.D.: Morphological structures produced by mixing in chaotic flows. Nature 333(6172), 419–425 (1988)

    Article  Google Scholar 

  4. Alvarez, G., Li, S., Montoya, F., Pastor, G., Romera, M.: Breaking projective chaos sychronization secure communication using filtering and generalized synchronization. Chaos Solitons Fractals 24(3), 775–783 (2005)

    Article  MATH  Google Scholar 

  5. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647–R650 (1994)

    Article  MathSciNet  Google Scholar 

  6. Asakura, H., Takemura, K., Yoshida, Z., Uchida, T.: Collisionless heating of electrons by meandering chaos and its application to a low-pressure plasma source. Jpn. J. Appl. Phys. 36(1), 4493–4496 (1997)

    Article  Google Scholar 

  7. Chen, G.: Controlling chaos and bifurcations in engineer system. CRC Press, Boca Raton (1999)

  8. Dias, F.S., Mello, L.F., Zhang, J.G.: Nonlinear analysis in a Lorenz-like system. Nonlinear Anal. RWA 11(5), 3491–3500 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9(7), 1465–1466 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rössler, E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  Google Scholar 

  11. Rikitake, T.: Oscillation of a system of disk dynamos. Proc. Camb. Philos. Soc. 54, 89–105 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, C., Liu, T., Liu, L.: A new chaotic attractor. Chaos Solitons Fractals 22(5), 1031–1038 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Qiao, Z., Li, X.: Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system. Math. Comput. Model. Dyn. Syst. 20(3), 264–283 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li, X., Zhou, Z.: Hopf bifurcation of codimension one and dynamical simulation for a 3D autonomous chaotic system. Bull. Korean Math. Soc. 51(2), 457–478 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ilyashenko, Y.: Finiteness theorems for limit cycles. American Mathematical Society, Providence (1993)

    Google Scholar 

  16. Ferragut, A., Llibre, J., Pantazi, C.: Polynomial vector fields in \({\mathbb{R}}^3\) with infinitely many limit cycles. Int. J. Bifurcat. Chaos 23(2), 1350029 (2013)

    Article  MathSciNet  Google Scholar 

  17. Li, X., Chu, Y., Zhang, J., Chang, Y.: Nonliear dynamics and circuit implementation for a new Lorenz-like attractor. Chaos Solitons Fractals 41(5), 2360–2370 (2009)

    Article  MATH  Google Scholar 

  18. Kokubu, H., Roussarie, R.: Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences: part I. J. Dyn. Differ. Equ. 16(2), 513–557 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Llibre, J., Messias, M.: Global dynamics of the Rikitake system. Phys. D 238(3), 241–252 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Messias, M.: Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system. J. Phys. A Math. Theor. 42(11), 115101 (2009)

    Article  MathSciNet  Google Scholar 

  21. Llibre, J., Messias, M., Silva, P.R.: On the global dynamics of the Rabinovich system. J. Phys. A Math. Theor. 41(27), 275210 (2008)

    Article  Google Scholar 

  22. Messias, M.: Dynamics at infinity of a cubic Chuas system. Int. J. Bifurcat. Chaos 21(1), 333–340 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, Y., Yang, Q.: Dynamics of the Lü system on the invariant algebraic surface and at infinity. Int. J. Bifurcat. Chaos 21(9), 2559–2582 (2011)

  24. Zhou, T., Cheng, G.: Classification of chaos in 3-D autonomous quadratic system-I: basic framework and methods. Int. J. Bifurcat. Chaos 16(9), 2459–2479 (2006)

    Article  MATH  Google Scholar 

  25. Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1264–1272 (2012)

    Article  MathSciNet  Google Scholar 

  26. Kuzenetsov, Y.A.: Elements of applied bifurcation theory, 3rd edn. Springer, New-York (2004)

    Book  Google Scholar 

  27. Mees, A.I., Chapman, P.B.: Homoclinic and heteroclinic orbits in the double scroll attractor. IEEE Trans. Circuits Syst. 34(9), 1115–1120 (1987)

  28. Tigan, G., Constantinescu, D.: Heteroclinic orbits in the \(T\) and the Lü system. Chaos Solitons Fractals 42(1), 20–23 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wiggins, S.: Global bifurcations and chaos: analytical methods. Springer, New York (1988)

    MATH  Google Scholar 

  30. Li, T., Chen, G., Chen, G.: On homoclinic and heteroclinic orbits of Chen’s system. Int. J. Bifurcat. Chaos 16(10), 3035–3041 (2006)

    Article  MATH  Google Scholar 

  31. Li, X., Wang, H.: Homoclinic and heteroclinic orbits and bifurcations of a new Lorenz-type system. Int. J. Bifurcat. Chaos 21(9), 2695–2712 (2011)

    Article  MATH  Google Scholar 

  32. Liu, Y., Yang, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal. Real World Appl. 11(4), 2563–2572 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Li, X., Ou, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Dyn. 65(3), 255–270 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Li, X., Wang, P.: Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system. Nonlinear Dyn. 73(1–2), 621–632 (2013)

    MATH  Google Scholar 

  35. Yang, Q., Wei, Z.: An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurcat. Chaos 20(4), 1061–1083 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. El-Dessokya, M.M., Yassen, M.T., Saleh, E., Aly, E.S.: Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems. Appl. Math. Comput. 218(24), 11859–11870 (2012)

    Article  MathSciNet  Google Scholar 

  37. Hale, J.K.: Ordinary diferential equations. Wiley, New York (1969)

    Google Scholar 

  38. Silva, C.P.: Shil’nikov’s theorem—a tuitorial. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(10), 675–682 (1993)

Download references

Acknowledgments

This work is partly supported by NSF of China (grant: 61473340, 10771094), the Postgraduate Innovation Project of Jiangsu Province (grant: KYZZ\(_{-}\)0361) and the NSF of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, X. On singular orbits and a given conjecture for a 3D Lorenz-like system. Nonlinear Dyn 80, 969–981 (2015). https://doi.org/10.1007/s11071-015-1921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1921-8

Keywords

Mathematics Subject Classification

Navigation