Skip to main content
Log in

Herglotz-d’Alembert principle and conservation laws for nonholonomic systems with variable mass

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Variable mass systems are ubiquitous in nature and engineering. The aim of this paper is to extend the Herglotz generalized variational principle to variable mass nonholonomic systems. In this paper, Herglotz conservation laws of variable mass nonholonomic systems are studied. The Herglotz generalized variational principle of variable mass nonholonomic systems is established, and the Herglotz-d’Alembert principle for nonholonomic systems with variable mass is derived, in which the Hölder definition of commutative relation is used. The transformation of the invariance condition of Herglotz-d’Alembert principle is established by introducing the generators of space and time. Herglotz conservation theorem and its inverse for variable mass nonholonomic systems are constructed based on this principle. In the end, an example is used as a proof of this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L W Yang and F X Mei Beijing Beijing Inst. Technol. Press (1989) (in Chinese)

  2. Z M Ge and Y H Cheng Appl. Math. Mech. 4 291 (1983)

    Article  Google Scholar 

  3. Y F Qiao Acta Phys. Sin. 50 805 (2001) (in Chinese)

    Article  Google Scholar 

  4. B Jeremić, R Radulović, A Obradović \(\breve{S}\)alinić and M Dražić Math. Mech. Solids 24 281 (2019)

  5. R A El-Nabulsi Int. J. Non Linear Mech. 93 65 (2017)

    Article  ADS  Google Scholar 

  6. R A El-Nabulsi Acta Mech. 232 89 (2021)

    Article  MathSciNet  Google Scholar 

  7. L Cveticanin J. Serb. Soc. Comput. Mech. 6 56 (2012)

    Google Scholar 

  8. N Angadh and E Fidelis J. Astronaut. Sci. 64 99 (2017)

    Article  Google Scholar 

  9. N Angadh and E Fidelis Aerosp. Sci. Technol. 79 1 (2018)

    Article  Google Scholar 

  10. J E Hurtado J. Guid. Control Dynam. 41 701 (2018)

    Article  ADS  Google Scholar 

  11. L L Xia, Y C Li, Q B Hou and J Wang Chin. Phys. B 15 903 (2006)

    Article  Google Scholar 

  12. W A Jiang, X J Han and L Q Chen Acta Mech. 231 2815 (2020)

    Article  MathSciNet  Google Scholar 

  13. J Zhao, X Q Ding and B Jiang Int J. Robust Nonlinear 17 31 (2021)

    Google Scholar 

  14. F Araghi, S Miraboutalebi and D Dorranian Indian J. Phys. 94 547 (2020)

    Article  ADS  Google Scholar 

  15. H G Abdelwahed, A M El-Hanbaly and R Sabry Indian J. Phys. 95 1909 (2021)

    Article  ADS  Google Scholar 

  16. H Irschik and H J Holl Appl. Mech. Rev. 57 145 (2004)

    Article  ADS  Google Scholar 

  17. R Zhao and K P Yu Int J. Numer. Mech. Eng. 99 711 (2014)

    Article  Google Scholar 

  18. F X Mei, H B Wu and Y F Zhang Int J. Dyn. Control 3 2 (2014)

    Google Scholar 

  19. Y Zhang J. Dynam. Control 17 15 (2019) (in Chinese)

    Google Scholar 

  20. B Vujanović Int. J. Non-Linear Mech. 13 185 (1978)

    Article  ADS  Google Scholar 

  21. D Liu Acta Mech. Sin. 21 75 (1989) (in Chinese)

    Google Scholar 

  22. B Vujanović Acta Mech. 65 63 (1986)

    Article  MathSciNet  Google Scholar 

  23. Y Zhang Chin. J. Theor. Appl. Mech. 48 1382 (2016) (in Chinese)

    ADS  Google Scholar 

  24. X Tian and Y Zhang J. Nanjing Univ. Sci. Technol. 43 765 (2019) (in Chinese)

    Google Scholar 

  25. Y Zhang Acta Mech. 228 1481 (2017)

    Article  MathSciNet  Google Scholar 

  26. Y Zhang and X Tian Phys. Lett. A 383 691 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  27. T M Atanacković, S Konjik and S Pilipović Acta Mech. 230 4357 (2019)

    Article  MathSciNet  Google Scholar 

  28. T M Atanacković, M Janev and S Pilipović Acta Mech. 232 1131 (2021)

    Article  MathSciNet  Google Scholar 

  29. X Tian and Y Zhang Commun. Theor. Phys. 70 280 (2018)

    Article  ADS  Google Scholar 

  30. X Tian and Y Zhang Acta Mech. 229 3601 (2018)

    Article  MathSciNet  Google Scholar 

  31. J J Ding and Y Zhang Chaos Soliton. Fract. 138 109913 (2020)

    Article  Google Scholar 

  32. Y Zhang and J X Cai Wuhan Univ. J. Nat. Sci. 26 376 (2021)

    Google Scholar 

  33. X X Xu and Y Zhang Acta Mech. 231 4881 (2020)

    Article  MathSciNet  Google Scholar 

  34. Y Zhang and J X Cai J. Dyn. Control 20 15 (2022) (in Chinese)

    Google Scholar 

  35. R A El-Nabulsi Phys. E Low Dim. Syst. Nanostruct. 134 114827 (2021)

    Article  Google Scholar 

  36. X L Peng, J Y Liu and C S Jia Phys. Lett. A 352 478 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  37. R A El-Nabulsi Eur. Phys. J. Plus 134 192 (2019)

    Article  Google Scholar 

  38. M Davidson J. Phys. Conf. Ser. 615 012016 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos.12272248 and 11972241) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20191454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, My., Zhang, Y. Herglotz-d’Alembert principle and conservation laws for nonholonomic systems with variable mass. Indian J Phys 97, 2109–2116 (2023). https://doi.org/10.1007/s12648-022-02549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02549-z

Keywords

Navigation