Skip to main content
Log in

Noether’s theorem of nonholonomic systems in optimal control

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we extend Noether’s theorem to nonholonomic constraints systems in optimal control. We present a systematic way to calculate conserved quantities along the Pontryagin extremals for optimal control problems with nonholonomic constraints, which are invariant under the parameter groups of infinitesimal transformations that change all (time, state, control) variables. Meanwhile, the Noether equalities corresponding to the conservation laws are given. Then, we obtain a new version of Noether’s theorem to optimal control systems. An example is given to illustrate the application of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batlle, C., Gomis, J., Gràcia, X. Pons, J.M. Noether’s theorem and gauge transformations. J. Math. Phys., 30: 1345–1361 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bloch, A., Baillieul, J., Crouch, P., Marsden, J. Nonholonomic mechanisc and control. Springer-Verlag, New York, 2003

    Book  Google Scholar 

  3. Cariñena, J.F., López, C., Martínez, E. A new approach to the converse of Noether’s theorem. J. Phys. A: Math. Gen., 22: 4777–4786 (1989)

    Article  MATH  Google Scholar 

  4. Djukic, D.S., Vujanovic, B.D., Yugoslavia, N.S. Noether’s theory in classical nonconservative mechanics. Acta Mech., 23: 17–27 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dooren, R.V. Derivation of the Lagrange equations for nonholonomic Chataev systems from a modified Pontryagin maximum principle. J. Appl. Math. Phys., 28: 729–734 (1977)

    Article  MATH  Google Scholar 

  6. Fu, J.L., Chen, B.Y., Chen, L.Q. Noether symmetries of discrete nonholonomic dynamical systems. Phys. Lett. A, 373: 409–412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fu, J.L., Chen, L.Q. On Noether symmetries and form invariance of mechanico-electrical systems. Phys. Lett. A, 331: 138–152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fu, J.L., Chen, L.Q., Chen, B.Y. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices. Sci. China, 53: 1687–1698 (2010)

    Google Scholar 

  9. Grizzle, J.W., Marcus, S.I. Optimal control of systems posessing symmetries. IEEE Trans. Automat. Control, 29: 1037–1040 (1984)

    Article  MathSciNet  Google Scholar 

  10. Hussein, I.I., Bloch, A.M. Optimal control of underactuated nonholonomic mechanical systems. IEEE Trans. Automat. Control, 53: 668–682 (2008)

    Article  MathSciNet  Google Scholar 

  11. Leitmann, G. Optimization techniques. Academic Press, New York, 1962

    MATH  Google Scholar 

  12. Logan, J.D. Invariant variational principles. Academic Press, New York, 1977

    Google Scholar 

  13. Marsden, J.E., Ratiu, T.S. Introduction to mechanics and symmetry. Springer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

  14. Mei, F.X. Applications of Lie Group and Lie Algebra to Constrained Mechanics Systems. Science Press, Beijing, 1999

    Google Scholar 

  15. Mei, F.X. Foundations of mechanics of nonholonomic systems. Beijing Institute of Technology Press, Beijing, 1985 (in Chinese)

    Google Scholar 

  16. Mei, F.X. On the integration methods of non-holonomic dynamics. Int. J. Nonlin. Mech., 35: 229–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nijmeijer, H., van der Schaft, A.J. Partial symmetries for nonlinear systems. Math. Systems Theory, 18: 79–96 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Noether, E. Invariant variation problems. Transport Theory Statist. Phys., 1: 186–207 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Noether, E. Invariante variations problems. Nachr. Akad. Wiss. Gott. Math. Phys., 2: 235–237 (1918)

    MATH  Google Scholar 

  20. Olver, P.J. Applications of Lie groups to differential equations. Springer-Verlag, New York, 1999

    Google Scholar 

  21. Torres, D.F.M. Carathdory equivalence, Noether theorems, and Tonelli full-regularity in the calculus of variations and optimal control. J Math Sci., 120: 1032–1050 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Torres, D.F.M. On the Noether theorem for optimal control. Eur. J. Control, 8: 56–63 (2002)

    Article  MATH  Google Scholar 

  23. Trautman, A. Noether equations and conservation laws. Comm. Math. Phys., 6; 248–261 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, S., Fu, H. Fu, J.L. Symmetry theories of Hamiltonnian syetems with fractional derivatives. Sci. China, 54: 1847–1853 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-li Fu.

Additional information

Supported by the National Natural Science Foundation of China (No. 11272287, 11472247).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Pp., Song, D. & Fu, Jl. Noether’s theorem of nonholonomic systems in optimal control. Acta Math. Appl. Sin. Engl. Ser. 32, 875–882 (2016). https://doi.org/10.1007/s10255-016-0607-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-016-0607-4

Keywords

2000 MR Subject Classification

Navigation