Skip to main content
Log in

Ro-vibrational energies and expectation values of selected diatomic molecules via Varshni plus modified Kratzer potential model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The analytical solutions of the Klein–Gordon equation of diatomic molecules with an approximation to the centrifugal term for the Varshni plus modified Kratzer potential model are obtained approximately within the framework of the Nikiforov–Uvarov (NU) method. The expression for ro-vibrational energy, normalized wave function, and expectation values for the diatomic molecules \({\text{N}}_{2} {\text{, CO, NO, I}}_{2} {\text{ and H}}_{2}\) have all been obtained. The ro-vibrational energies for the dimer molecules were computed using their separate spectroscopic parameters. Utilizing Hellman–Feynman theorem, the expectation values of the inverse square position \(\left\langle {r^{ - 2} } \right\rangle\), kinetic energy \(\left\langle T \right\rangle\), square of momentum \(\left\langle {P^{2} } \right\rangle\), and their separate numerical values for the selected diatomic molecules were obtained explicitly. Two special cases of the potential are also studied, and their numerical energy eigenvalues obtained are reliable and very consistent with the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E P Inyang, E S William, J A Obu, B I Ita, E P Inyang and I O Akpan Mol. phys e1956615 (2021)

  2. P G Haji0georgiou J. Mol. Spectrosc. 263 101 (2010)

  3. J C Xie, T Kar and R H Xie Chem. Phys. Lett. 591 69 (2014)

  4. A Kratzer Z. Phys. 289 3 (1920)

    Google Scholar 

  5. P M Morse Phys Rev 57 34 (1929)

  6. M F Manning and N Rosen Phys Rev 1951 44 (1933)

    Google Scholar 

  7. G Poschl and E Teller Z. Physik 143 83 (1933)

    Google Scholar 

  8. Z H Deng and Y P Fan Shandong Univ. J. 162 7 (1957)

    Google Scholar 

  9. T Tietz J. Chem. Phys 3036 38 (1963)

  10. D Schioberg Mol. Phys. 1123 59 (1986)

  11. H Wei Phys. Rev. A 42 2524 (1990)

    Article  ADS  Google Scholar 

  12. K X Fu, M Wang and C S Jia Commun. Theor. Phys 71 103 (2019)

    Article  ADS  Google Scholar 

  13. P Q Wang, L H Zhang, C S Jia and J Y Liu J. Mol. Spectrosc. 274 5 (2012)

    Article  ADS  Google Scholar 

  14. P Q Wang, J Y Liu, L H Zhang and C S Jia J. Mol. Spectrosc. 278 23 (2012)

    Article  ADS  Google Scholar 

  15. C S Jia, Y F Diao, X J Liu, P Q Wang, J Y Liu and G D Zhang J. Chem. Phys. 137, 014101 (2012)

  16. G C Liang Theor. Chem 170 1020 (2013)

    Google Scholar 

  17. A M Desai, N Mesquita and V Fernandes Phys. scr. 95 085401 (2020)

  18. H Bakhti, A Diaf, M Hachama Comput. Theor. Chem. (2020)

  19. P Q Wang, J Y Liu, L H Zhang, S Y Cao and C S Jia J. Mol. Spectrosc 278 26 (2012)

    Article  ADS  Google Scholar 

  20. C S Jia, C W Wang, L H Zhang, X L Peng, H M Tang, J Y Liu, Y Xiong and R Zeng Chem. Phys Lett 692 60 (2018)

    Article  ADS  Google Scholar 

  21. U S Okorie, A N Ikot and E O Chukwuocha J. Mol. Model (2020)

  22. X Q Song, C W Wang and C S Jia Chem. Phys.Lett. 673 50 (2017)

  23. M Buchowiecki Chem. Phys. Lett. 692 236 (2018)

  24. E P Inyang, E P Inyang, I O Akpan, J E Ntibi and E S William Can. J. Phys. 2 6 (2021)

    Google Scholar 

  25. M Deng and C S Jia Eur. Phys. J. Plus 133 258 (2018)

    Article  Google Scholar 

  26. E P Inyang, E P Inyang, J E Ntibi, E E Ibekwe and E S William Ind. J. Phys. 95 2733 (2021)

    Article  Google Scholar 

  27. E S William, E P Inyang and E A Thompson Rev. Mex. Fis 66 6 (2020)

  28. E A Thompson, E P Inyang and E S William Phys. Sci. Technol 8 3–4 (2021)

    Article  Google Scholar 

  29. E S William, J A Obu, I O Akpan, E A Thompson, E P Inyang Eur. J. Appl. Phys. 2 6 (2020)

  30. I O Akpan, E P Inyang, E P Inyang and E S William Rev. Mex. Fis 67 3 (2021)

    Google Scholar 

  31. Kumar and F Chand Commun. Theor. Phys. 59 (2013)

  32. A N Ikot, U S Okorie, A T Ngiagian, C A Onate, C O Edet, I O Akpan and P O Amadi Eclética Quim. J 45 1 (2020)

  33. K J Oyewumi, B J Falaye, C A Onate et al Mol. Phys. 112 (2014)

  34. E P Inyang, E P Inyang, J Karniliyus, J E Ntibi and E S William J. Appl. Phys. 3 2 (2021)

    Google Scholar 

  35. A N Ikot, H P Obong and H Hassanabadi Few-Body Syst. 56 185 (2015)

    Article  ADS  Google Scholar 

  36. E Omugbe, O E Osafile, I B Okon, E P Inyang, E S William and A Jahanshir Few-Body Syst. 63 6 (2022)

    Article  ADS  Google Scholar 

  37. O Bayrak, I Boztosun and H Cifti J. Quant. Chem. 107 540 (2007)

    Article  ADS  Google Scholar 

  38. A Maireche Afr. rev. phys 15 000319 (2020)

  39. S M Ikhdair and R Sever Int. J. Mod. Phys C 19 2 (2008)

    Google Scholar 

  40. J Sadeghia and B Pourhassan Electron. J. Theor. Phys. 5 17 (2008)

    Google Scholar 

  41. C O Edet, U S Okorie, A T Ngiangia, A N IKot Ind. J. Phys. 94 425 (2020)

    Article  Google Scholar 

  42. P Aspoukeh, S M Hamad Chin. J. Phys 68 (2020)

  43. A Saidi, M B Sedra Mod. Phys. Lett A 2050014 (2019)

  44. P O Amadi, A N Ikot, A T Ngiangia, U S Okorie, G J Rampho and H Y Abdullah Int. J. Quant. Chem. 120 e26246 (2020)

  45. Durmus, Aysen, Yasuk, Fevziye J. Chem. Phys 126 074108 (2007)

  46. J A Obu, P O Okoi and U S Okorie Indian J.Phys. 95 505 (2019)

    Article  ADS  Google Scholar 

  47. A N Ikot, U Okorie, A T Ngiangia, C A Onate, C O Edet, I O Akpan and P O Amadi Eclética Química 45 1 2020

  48. C P Onyenegecha, C A Onate, O K Echendu et al Eur. Phys. J. Plus 135 289 (2020)

  49. A Durmus J. Phys. A Math. Theor. 44 155205 (2011)

  50. F Hoseini, J K Saha and H Hassanabadi Comm. Theor. Phys 65 6 (2016)

    Article  Google Scholar 

  51. Y P Varshni Rev. Mod. Phys. 29 4 (1957)

  52. E P Inyang, E S William and J A Obu Rev. Mex. Fis. 67 2 (2021)

  53. E P Inyang, E P Inyang, E S William and E E Ibekwe Jord. J Phys.14 4 (2021)

  54. C O Edet, P O Amadi, U S Okorie, A Tas, A N Ikot and G Rampho Rev. Mex. Fis. 66 6 (2020)

  55. W Greiner Relativistic quantum mechanics (Berlin, Springer) (2000)

  56. R L Greene, C Aldrich Phys. Rev. A14 6 (1976)

  57. E P Inyang, J E Ntibi, E P Inyang, E S William and C C Ekechukwu Intl innov sci engr. Tech. 7 11 (2020)

  58. J E Ntibi and E P Inyang J. Innov. Sci. Eng. Tech. 7 11 (2020)

    Google Scholar 

  59. C A Onate, J O Ojonubah Intl J. mod. Phys E 24 1550 (2015)

  60. C O Edet, U S Okorie , A T Ngiangia and A N Ikot Ind. J. Phys (2019)

  61. M Hamzavi, M Movahedi, K E Thylwe and A A Rajabi Chin. Phys.lett. 29 1838 (2012)

  62. J G Esteve, F Falceto and C Garacia Phys Lett 6 822 (2010)

    Google Scholar 

  63. Y P Varshni Chem. Phys. 353 32 (2008)

    Article  Google Scholar 

  64. C Berkdermir J. Math. Chem. 46 1122 (2009)

    Article  MathSciNet  Google Scholar 

  65. O J Oluwadere and K J Oyewumi Eur. Phys. J. plus 133 422 (2018)

    Article  Google Scholar 

  66. S M Ikhdair and B J Falaye Chem. phys. 421 (2013)

  67. I B Okon, A DAntia, L E Akpabio and B U Archibong J. appl phys Sci Intl.10 5 (2018)

  68. C Berkdemir Phys. Lett. 417 326 (2006)

    Google Scholar 

  69. K J Oyewumi and K D Sen J Math Chem (2012)

  70. A F Nikiforov and V B Uvarov Special Functions of Mathematical Physics (Birkhäuser, Basel) (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. William.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix methodology: review of Nikiforov-Uvarov (NU) method

The NU method was proposed by Nikiforov and Uvarov [70] to transform Schrödinger-like equations into a second-order differential equation of the form

$$\psi^{\prime\prime}\left( s \right) + \frac{{\tilde{\tau }\left( s \right)}}{\sigma \left( s \right)}\psi^{\prime}\left( s \right) + \frac{{\tilde{\sigma }\left( s \right)}}{{\sigma^{2} \left( s \right)}}\psi \left( s \right) = 0,$$
(60)

where \(\tilde{\sigma }\left( s \right),{\text{ and }}\sigma \left( s \right)\) are polynomials, at most second degree and \(\tilde{\tau }\left( s \right)\) is a first-degree polynomial. The exact solution of Eq. (60) can be obtain by using the transformation.

$$\psi \left( s \right) = \phi \left( s \right)y\left( s \right)$$
(61)

This transformation reduces Eq. (60) into a hypergeometric-type equation of the form

$$\sigma \left( s \right)y^{\prime\prime}\left( s \right) + \tau \left( s \right)y^{\prime}\left( s \right) + \lambda y\left( s \right) = 0$$
(62)

The function \(\phi (x)\) can be defined as the logarithm derivative

$$\frac{{\phi^{\prime}\left( s \right)}}{\phi \left( s \right)} = \frac{\pi \left( s \right)}{{\sigma \left( s \right)}},$$
(63)

with \(\pi (s)\) being at most a first-degree polynomial. The second part of \(\psi \left( s \right)\) being \(y(s)\) in Eq. (61) is the hypergeometric function with its polynomial solution given by Rodrigues relation as

$$y\left( s \right) = \frac{{B_{nl} }}{\rho \left( s \right)}\frac{{d^{n} }}{{ds^{n} }}\left[ {\sigma^{n} \left( s \right)\rho \left( s \right)} \right]$$
(64)

where \(B_{nl}\) is the normalization constant, and \(\rho \left( s \right)\)is the weight function which satisfies the condition as follows:

$$\left( {\sigma \left( s \right)\rho \left( s \right)} \right)^{\prime } = \tau \left( s \right)\rho \left( s \right)$$
(65)

where also

$$\tau \left( s \right) = \tilde{\tau }\left( s \right) + 2\pi \left( s \right)$$
(66)

For bound solutions, it is required that

$$\tau^{/} (s) < 0$$
(67)

The eigenfunctions and eigenvalues can be obtained using the definition of the following function \(\pi \left( s \right)\) and parameter λ, respectively:

$$\pi \left( s \right) = \frac{{\sigma^{\prime}\left( s \right) - \tilde{\tau }\left( s \right)}}{2} \pm \sqrt {\left( {\frac{{\sigma^{\prime}\left( s \right) - \tilde{\tau }\left( s \right)}}{2}} \right)^{2} - \tilde{\sigma }\left( s \right) + k\sigma \left( s \right)}$$
(68)

and

$$\lambda = k_{ - } + \pi^{\prime}_{ - } \left( s \right)$$
(69)

The value of \(k\) casn be obtained by setting the discriminant in the square root in Eq. (68) equal to zero. As such, the new eigenvalues equation can be given as

$$\lambda_n + n\tau^{^{\prime}} \left( s \right) + \frac{n(n - 1)}{2}\sigma^{^{\prime\prime}} \left( s \right) = 0,(n = 0,1,2,...)$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

William, E.S., Inyang, E.P., Akpan, I.O. et al. Ro-vibrational energies and expectation values of selected diatomic molecules via Varshni plus modified Kratzer potential model. Indian J Phys 96, 3461–3476 (2022). https://doi.org/10.1007/s12648-022-02308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02308-0

Keywords

Navigation