Skip to main content
Log in

Unsteady flow of gas in a semi-infinite porous medium: a numerical investigation by using RBF-DQM

  • Original Scientific Research
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The study aims to investigate how an effective numerical algorithm can be used to solve the unsteady isothermal flow of gas through a semi-infinite micro-nano porous medium. The unsteady gas equation used here is a nonlinear, second order differential equation with two points of boundary value on the semi-infinite domain. The study uses RBFs-DQ method in which the derivative value of function with respect to the point is directly approximated by a linear combination of all functional values in the entire domain. The main purpose of using this method is to determine the weight of coefficients. The study also used Gaussian (GS) function to approximate the solution of the mentioned equation. The efficiency and accuracy of this method are verified by the comparison made between our results and other numerical methods including shooting method, RBF.G and Wavelet Legendre collocation method. As a results, by comparison made to other numerical methods this showed a Meshfree (RBF-DQ) method which its validity is equal or even more valid than numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R Kidder J. Appl. Mech. 27 329 (1957)

    Article  Google Scholar 

  2. T Y Na Computational methods in engineering boundary value problems (Academic Press, New York) (1979)

    MATH  Google Scholar 

  3. R P Agarwal and D O’Regan Stud. Appl. Math. 108 245 (2002)

    Article  MathSciNet  Google Scholar 

  4. F Mirzaee and S F Hoseini Beni-Suef Univ. J. Basic Appl. Sci.3 157 (2014)

    Google Scholar 

  5. K Parand, S Hashemi-Shahraki and A Ghaderi The Second National Conference on Meta-Heuristic Algorithms and Their Applications in Engineering and Science (Iran, Najaf abad) (2017)

  6. M Lentini and H B Keller SIAM J. Numer. Anal. 17 577 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. J P Boyd Comput. Phys. 11 299 (1997)

    Article  ADS  Google Scholar 

  8. R Funaro and O Kavian Math. Comput. 57 597 (1991)

    Article  ADS  Google Scholar 

  9. R Fazio and A Jannelli J. Comput. Appl. Math. 269 14 (2014)

    Article  MathSciNet  Google Scholar 

  10. H Ibdah, S A Khuri and A Sayfy Int. J. Comput. Method Eng. Sci. Mech. 15 448 (2014)

    Article  Google Scholar 

  11. A S V Ravi Kanth and Y N Reddy Appl. Math. Comput. 144 483 (2003)

    MathSciNet  Google Scholar 

  12. R Fazio and A Jannelli Math. Methods Appl. Sci. 40 6285 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. R Fazio and A Jannelli Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 96 3(2018)

    Google Scholar 

  14. K Parand and M Hemami Int. J. Appl. Comput. Math. 3 1053 (2017)

    Article  MathSciNet  Google Scholar 

  15. R C Roberts J. Appl. Mech. Trans. ASME 18 326 (1951)

    Google Scholar 

  16. A M Wazwaz Appl. Math. Comput. 118 123 (2001)

    MathSciNet  Google Scholar 

  17. K Parand, M Shahini and A Taghavi Int. J. Contemp. Math. Sci. 4 1005 (2009)

    MathSciNet  Google Scholar 

  18. A Taghavi, K Parand and H Fani World Acad. Sci. Eng. Technol.35 1016 (2009)

    Google Scholar 

  19. A Taghavi, K Parand, A Shams and H G Sofloo J. Comput. Theor. Nanosci. 7 542 (2010)

    Article  Google Scholar 

  20. A Rezaei, K Parand and A Pirkhedri J. Comput. Theor. Nanosci. 8 282 (2011)

    Article  Google Scholar 

  21. J Rad, S Ghaderi and K Parand J. Comput. Theor. Nanosci. 8 2033 (2011)

    Article  Google Scholar 

  22. M A Noor and S T Mohyud-Din Comput. Math. Appl. 58 2182 (2009)

    Article  MathSciNet  Google Scholar 

  23. Y Khan, N Faraz and A Yildirim (2010) World Appl. Sci. J.10 1452 (2010)

    Google Scholar 

  24. R Lacono and J P Boyd Studies Appl. Math. 135 63 (2015)

    Article  MathSciNet  Google Scholar 

  25. R Fazio, A Jannelli and T Rotondo Int. J. Non-Linear Mech. 105 186 (2018)

    Article  ADS  Google Scholar 

  26. S Upadhyay and K N Ray Int. J. Appl. Math. Res. 3 251 (2014)

    Article  Google Scholar 

  27. K Parand and M Delkhosh J. Comput. Nonlinear Dyn. 13 011007 (2018)

    Article  Google Scholar 

  28. K Parand, S Latifi, M Delkhosh and M M Moayeri Europ. Phys. J. Plus 133 28 (2018)

    Article  ADS  Google Scholar 

  29. K Parand, P Mazaheri, M Delkhosh and A Ghaderi SEMA J. 74 569 (2017)

    Article  MathSciNet  Google Scholar 

  30. K Parand and M Hemami Iran. J. Sci. Tech. Trans. A 41 677 (2017)

    Article  Google Scholar 

  31. R Franke Math. Comput. 38 181 (1982)

    Google Scholar 

  32. E J Kansa Comput. Math. Appl. 19 127 (1990)

    Article  MathSciNet  Google Scholar 

  33. E J Kansa Comput. Math. Appl. 19 147 (1990)

    Article  MathSciNet  Google Scholar 

  34. M Zerroukat, H Power and C Chen Int. J. Numer. Methods Eng. 42 1263 (1998)

    Article  Google Scholar 

  35. N Mai-Duy and T Tran-Cong Neural Netw. 14 185 (2001)

    Article  Google Scholar 

  36. K Parand, S Abbasbandy, S Kazem and J Rad Commun. Nonlinear Sci. Numer. Simul. 16 4250 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Islam, S Haq and A Ali J. Comput. Appl. Math. 223 997 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. S Kazem, J Rad and K Parand Eng. Anal. Boundary Elem. 36 181 (2012)

    Article  MathSciNet  Google Scholar 

  39. S Kazem and J Rad Appl. Math. Model. 36 2360 (2012)

    Article  MathSciNet  Google Scholar 

  40. S Kazem, J Rad and K Parand Comput. Math. Appl. 64 399 (2012)

    Article  MathSciNet  Google Scholar 

  41. K Parand and S Hashemi Ain Shams Eng. J. 9 615 (2016)

    Article  Google Scholar 

  42. S Rippa Adv. Comput. Math. 11 193 (1999)

    Article  MathSciNet  Google Scholar 

  43. A D Cheng, M Golberg, E Kansa and G Zammito Numer. Methods Part. Diff. Eq. 19 571 (2003)

    Article  Google Scholar 

  44. R E Carlson and T A Foley Comput. Math. Appl. 21 29 (1991)

    Article  MathSciNet  Google Scholar 

  45. A E Tarwater Parameter Study of Hardy’s Multiquadric Method for Scattered Data Interpolation (Lawrence Livermore National Lab., CA, USA) (1985)

    Google Scholar 

  46. G E Fasshauer and J G Zhang Numer. Algoritms 45 345 (2007)

    Article  ADS  Google Scholar 

  47. M J Powell The Theory of Radial Basis Function Approximation in 1990 (University of Cambridge. Department of Applied Mathematics and Theoretical Physics, Cambridge) (1990)

    Google Scholar 

  48. K Parand, M Hemami and S Hashemi-Shahraki Int. J. Appl. Comput. Math. 3 521 (2017)

    Article  MathSciNet  Google Scholar 

  49. M Hemami, K Parand and J A Rad Comp. Math. Comput. App. 78 1053 (2019)

    Google Scholar 

  50. M Hemami, J A Rad and K Parand  J. Compu. Sci. 42 101090  (2020)

    Article  Google Scholar 

  51. R Bellman, B Kashef and J Casti J. Comput. Phys. 10 40 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  52. C Shu Differential Quadrature and Its Application in Engineering (Springer, Berlin) (2012)

    Google Scholar 

  53. Z Zong and Y Zhang Advanced Differential Quadrature Methods (CRC press, Boca Raton) (2009)

    Book  MATH  Google Scholar 

  54. S Kazem, J Rad, K Parand, M Shaban and H Saberi Int. J. Comput.Math. 89 2240 (2012)

    Article  MathSciNet  Google Scholar 

  55. R B Platte Accuracy and stability of global radial basis function methods for the numerical solution of partial differential equations (University of Delaware) (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parand, K., Hashemi-Shahraki, S. & Hemami, M. Unsteady flow of gas in a semi-infinite porous medium: a numerical investigation by using RBF-DQM. Indian J Phys 95, 2107–2114 (2021). https://doi.org/10.1007/s12648-020-01859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01859-4

Keywords

Navigation