Skip to main content
Log in

Two Meshfree Numerical Approaches for Solving High-Order Singular Emden–Fowler Type Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we suggest indirect radial basis function collocation and radial basis function differential quadrature methods for solving high-order singular Emden–Fowler equations. Here, we concentrate on Gaussian (GA, \(\exp (-c^2 r^2)\)) as a radial function for approximating the solution of the mentioned equations. In order to overcome the difficulty of the singular point (\(x=0\)), the Head dense points with dense parameter \(\vartheta \) and shifted Chebyshev points have been handled. The comparison between the numerical and exact results shows the efficiency and accuracy of these methods and also demonstrate these methods have good convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Azarnavid, B., Parvaneh, F., Abbasbandy, S.: Picard-reproducing kernel hilbert space method for solving generalized singular nonlinear Lane–Emden type equations. Math. Model. Anal. 20(6), 754–767 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ahlkrona, J., Shcherbakov, V.: A meshfree approach to non-Newtonian free surface ice flow: application to the Haut Glacier d’Arolla. J. Comput. Phys. 330, 633–649 (2017)

    Article  MathSciNet  Google Scholar 

  3. Arora, G., Bhatia, G.B.: Radial basis function methods to solve partial differential equations arising in financial applications–A review. Nonlinear Stud. 24(1), 15–25 (2017)

    MATH  Google Scholar 

  4. Baharifard, F., Kazem, S., Parand, K.: Rational and exponential legendre tau method on steady flow of a third grade fluid in a porous half space. Int. J. Appl. Comput. Math. 2(4), 679–698 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bataineh, A.S., Noorani, M., Hashim, I.: Homotopy analysis method for singular IVPs of emdenfowler type. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1121–1131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellman, R., Kashef, B., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10(1), 40–52 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhrawy, A.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms 73(1), 91–113 (2016a)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhrawy, A.: A new spectral algorithm for a time-space fractional partial differential equations with subdiffusion and superdiffusion. Proc. Rom. Acad. A 17, 39–46 (2016b)

    MathSciNet  Google Scholar 

  9. Chadwick, E., Hatam, A., Kazem, S.: Exponential function method for solving nonlinear ordinary differential equations with constant coefficients on a semi-infinite domain. Proc. Math. Sci. 126(1), 79–97 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. Calvert, V., Mashayekhi, S., Razzaghi, M.: Solution of lane–emden type equations using rational Bernoulli functions. Math. Methods Appl. Sci. 39(5), 1268–1284 (2015)

  11. Carrillo, J.A., Chertock, A., Huang, Y.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17, 233–258 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chandrasekhar, S.: Introduction to the Study of Stellar Structure. Dover, New York (1967)

    Google Scholar 

  13. Chowdhury, M., Hashim, I.: Solutions of emdenfowler equations by homotopy-perturbation method. Nonlinear Anal Real World Appl 10(1), 104–115 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Das, N., Singh, R., Wazwaz, A.-M., Kumar, J.: An algorithm based on the variational iteration technique for the bratu-type and the lane-emden problems. J. Math. Chem. 54(2), 527–551 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dehghan, M.: A finite difference method for a non-local boundary value problem for two-dimensional heat equation. Appl. Math. Comput. 112(1), 133–142 (2000)

    MATH  MathSciNet  Google Scholar 

  16. Dehghan, M.: Weighted finite difference techniques for the one-dimensional advection–diffusion equation. Appl. Math. Comput. 147(2), 307–319 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71(1), 16–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of two methods based on galerkin weak form for fractional diffusion-wave: meshless interpolating element free galerkin (iefg) and finite element methods. Eng. Anal. Bound. Elements 64, 205–221 (2016)

    Article  MathSciNet  Google Scholar 

  19. Dehghan, M., Mohammadi, V.: The numerical solution of CahnHilliard (CH) equation in one, two and three-dimensions via globally radial basis functions (GRBFs) and RBFs-differential quadrature (RBFs-DQ) methods. Eng. Anal. Bound. Elements 51, 74–100 (2015)

    Article  MathSciNet  Google Scholar 

  20. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  21. Hashemi, M.R., Hatam, F.: Unsteady seepage analysis using local radial basis function-based differential quadrature method. Appl. Math. Model. 35(10), 4934–4950 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Haq, Sirajul, Ali, Arshed: A meshfree method for the numerical solution of the RLW equation. J. Comput. Appl. Math. 223(2), 997–1012 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Heydari, M., Hooshmandasl, M., Mohammadi, F., Ciancio, A.: Solution of nonlinear singular initial value problems of generalized lane-Emden type using block pulse functions in a large interval. Waves Wavelets Fractals 2(1), 7–19 (2016)

    Article  Google Scholar 

  24. Hosseini, S.G., Abbasbandy, S.: Solution of lane-emden type equations by combination of the spectral method and adomian decomposition method. Math. Probl. Eng. 2015 (2015). doi:10.1155/2015/534754

  25. Kme, C., Atay, M. T., Eryilmaz, A., Kme, S.: Numerical solutions of linear and nonlinear lane-emden type equations by using magnus expansion method. In: AIP Conference Proceedings 1648 1 (2015) http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4912575

  26. Kazem, S., Hatam, A.: A modification on strictly positive definite RBF-DQ method based on matrix decomposition. Eng. Anal. Bound. Elements 76, 90–98 (2017)

    Article  MathSciNet  Google Scholar 

  27. Kazem, S., Rad, J.: Radial basis functions method for solving of a non-local boundary value problem with neumanns boundary conditions. Appl. Math. Model. 36(6), 2360–2369 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Khoshfetrat, A., Abedini, M.J.: Numerical modeling of long waves in shallow water using LRBF-DQ and hybrid DQ/LRBF-DQ. Ocean Model. 65, 1–10 (2013)

    Article  Google Scholar 

  29. Lakestani, M., Dehghan, M.: Four techniques based on the b-spline expansion and the collocation approach for the numerical solution of the lane-emden equation. Math. Methods Appl. Sci. 36(16), 2243–2253 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  31. Mall, S., Chakraverty, S.: Numerical solution of nonlinear singular initial value problems of emdenfowler type using chebyshev neural network method. Neurocomputing 149, Part B, 975–982. (2015) http://www.sciencedirect.com/science/article/pii/S0925231214009734

  32. Mai-Duy, N., Tran-Cong, T.: Solving biharmonic problems with scattered-point discretization using indirect radial-basis-function networks. Eng. Anal. Bound. Elements 30(2), 77–87 (2006)

    Article  MATH  Google Scholar 

  33. Mitchell, A.R., Griffiths, D.F.: The Finite Difference Method in Partial Differential Equations. John Wiley, Hoboken (1980)

    MATH  Google Scholar 

  34. Mohammadzadeh, R., Lakestani, M., Dehghan, M.: Collocation method for the numerical solutions of lane-emden type equations using cubic hermite spline functions. Math. Methods Appl. Sci. 37(9), 1303–1717 (2014)

    MATH  MathSciNet  Google Scholar 

  35. Nasab, A. K., Klman, A., Atabakan, Z. P., Leong, W.: A numerical approach for solving singular nonlinear laneemden type equations arising in astrophysics. New Astronomy 34, 178–186 (2015) http://www.sciencedirect.com/science/article/pii/S1384107614000967

  36. Noye, B., Dehghan, M.: New explicit finite difference schemes for two-dimensional diffusion subject to specification of mass. Num. Methods Partial Differ. Equ. 15(4), 521–534 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Noye, B., Dehghan, M., Van der Hoek, J.: Explicit finite difference methods for two-dimensional diffusion with a non-local boundary condition. Int. J. Eng. Sci. 32(11), 1829–1834 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Panayotounakos, D. E., Kravvaritis, D. C.: Exact analytic solutions of the abel, emdenfowler and generalized emdenfowler nonlinear ODEs. Nonlinear Analysis: Real World Applications 7(4): 634–650 (2006) http://www.sciencedirect.com/science/article/pii/S1468121805000611

  39. Parand, K., Ghaderi, A., Yousefi, D., Delkhosh, M.: A new approach for solving nonlinear Thomas–Fermi equation based on fractional order of rational Bessel functions. Electr. J. Differential Equ. 2016(331), 1–18 (2016)

    MATH  MathSciNet  Google Scholar 

  40. Parand, K., Delkhosh, M.: Accurate solution of the Thomas–Fermi equation using the fractional order of rational Chebyshev functions. J. Comput. Appl. Math. 317, 624–642 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  41. Parand, K., Hashemi, S.: RBF-DQ method for solving non-linear differential equations of lane-emden type. Ain Shams Eng. J. (2016) http://www.sciencedirect.com/science/article/pii/S209044791630034X

  42. Parand, K., Hemami, M.: Application of meshfree method based on compactly supported radial basis function for solving unsteady isothermal gas through a micro-nano porous medium. Iran J. Sci. Tech. Tran. A Sci. (2016a)

  43. Parand, K., Hemami, M.: Collocation method using compactly supported radial basis function for solving volterra’s population model. arXiv preprint arXiv:1509.04322. (2015b)

  44. Parand, K., Hemami, M.: Numerical study of astrophysics equations by meshless collocation method based on compactly supported radial basis function. Int. J. Appl. Comput. Math. 3(2), 1053–1075 (2016). doi:10.1007/s40819-016-0161-z

  45. Parand, K., Khaleqi, S.: The rational chebyshev of second kind collocation method for solving a class of astrophysics problems. Eur. Phys. J. Plus 131(2), 1–24 (2016)

    Article  Google Scholar 

  46. Parand, K., Nikarya, M., Rad, J.A.: Solving non-linear lane-emden type equations using bessel orthogonal functions collocation method. Celestial Mech. Dyn. Astron. 116(1), 97–107 (2013a)

    Article  MathSciNet  Google Scholar 

  47. Parand, K., Rezaei, A., Taghavi, A.: Lagrangian method for solving lane-Emden type equation arising in astrophysics on semi-infinite domains. Acta Astronaut. 67(7), 673–680 (2010b)

    Article  Google Scholar 

  48. Parand, K., Roozbahani, Z., Bayat Babolghani, F.: Solving nonlinear lane-emden type equations with unsupervised combined artificial neural networks. Int. J. Ind. Math. 5(4), 355–366 (2013b)

    Google Scholar 

  49. Parand, K., Shahini, M., Dehghan, M.: Rational legendre pseudospectral approach for solving nonlinear differential equations of lane-emden type. J. Comput. Phys. 228(23), 8830–8840 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  50. Platte, R.B.: C-infinity compactly supported and positive definite radial kernels. SIAM J. Sci. Comput. 37(4), A1934–A1956 (2015)

    Article  MATH  Google Scholar 

  51. Rad, J.A., Parand, K., Abbasbandy, S.: Local weak form meshless techniques based on the radial point interpolation (rpi) method and local boundary integral equation (lbie) method to evaluate european and american options. Commun. Nonlinear Sci. Numer. Simul. 22(1), 1178–1200 (2015a)

    Article  MATH  MathSciNet  Google Scholar 

  52. Rad, J.A., Parand, K., Ballestra, L.V.: Pricing european and american options by radial basis point interpolation. Appl. Math. Comput. 251, 363–377 (2015b)

    MATH  MathSciNet  Google Scholar 

  53. Rismani, A. M., Monfared, H.: Numerical solution of singular IVPs of laneemden type using a modified legendre-spectral method. Applied Mathematical Modelling 36, 10: 4830–4836 (2012) http://www.sciencedirect.com/science/article/pii/S0307904X11008043

  54. Shakeri, F., Dehghan, M.: A high order finite volume element method for solving elliptic partial integro-differential equations. Appl. Numer. Math. 65, 105–118 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  55. Shang, X., Wu, P., Shao, X.: An efficient method for solving emdenfowler equations. J. Franklin Inst. 346(9): 889–897 (2009) http://www.sciencedirect.com/science/article/pii/S0016003209000854

  56. Shivanian, E.: Analysis of the time fractional 2-D diffusion-wave equation via moving least square (MLS) approximation. Int. J. Appl. Comput. Math. (2016). doi:10.1007/s40819-016-0247-7

  57. Shu, C.: Differential Quadrature and its Application in Engineering. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  58. Shu, C., Ding, H., Yeo, K.S.: radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible NavierStokes equations. Computer Methods in Applied Mechanics and Engineering. 192, 941–954 (2003)

    Article  MATH  Google Scholar 

  59. Shu, C., Ding, H., Chen, H.Q., Wang, T.G.: upwind local RBF-DQ method for simulation of inviscid compressible flows. Computer Methods in Applied Mechanics and Engineering. 194, 2001–20017 (2005)

    Article  MATH  Google Scholar 

  60. Wu, Y.L., Shu, C.: Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli. Computational Mechanics 29, 477–485 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  61. Soleimani, S.: Local RBF-DQ method for two-dimensional transient heat conduction problems. Int. Commun. Heat Mass Transf. 37(9), 1411–1418 (2010)

    Article  Google Scholar 

  62. Tohidi, E., Erfani, K., Gachpazan, M., Shateyi, S.: A new tau method for solving nonlinear lane-emden type equations via bernoulli operational matrix of differentiation. J. Appl. Math. 2013 (2013). doi:10.1155/2013/850170

  63. Tour, M. K., Soulamani, A.: Stabilized finite element methods for solving the level set equation without reinitialization. Comput. Math. Appl. 71(8): 1602–1623 (2016) http://www.sciencedirect.com/science/article/pii/S0898122116300827

  64. Turkyilmazoglu, M.: Effective computation of exact and analytic approximate solutions to singular nonlinear equations of laneemdenfowler type. Appl. Math. Model. 37(1415), 7539–7548 (2013) http://www.sciencedirect.com/science/article/pii/S0307904X13001042

  65. Wazwaz, A.-M.: Adomian decomposition method for a reliable treatment of the emdenfowler equation. Appl. Math. Comput. 161(2), 543–560 (2005) http://www.sciencedirect.com/science/article/pii/S0096300304000104

  66. Wazwaz, A.-M.: A reliable treatment of singular emdenfowler initial value problems and boundary value problems. Appl. Math. Comput. 217(24): 10387–10395. (2011) http://www.sciencedirect.com/science/article/pii/S0096300311006540

  67. Wazwaz, A.-M.: Solving two Emden–Fowler type equations of third order by the variational iteration method. Appl. Math. 9(5), 2429–2436 (2015)

    MathSciNet  Google Scholar 

  68. Wazwaz, A.-M., Rach, R., Duan, J.-S.: Solving new fourth-order Emden–Fowler-type equations by the adomian decomposition method. Int. J. Comput. Methods Eng. Sci. Mech. 16(2), 121–131 (2015)

    Article  MathSciNet  Google Scholar 

  69. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  70. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  71. Yang, C., Hou, J.: A numerical method for lane-emden equations using hybrid functions and the collocation method. J. Appl. Math. 2012 (2012). doi:10.1155/2012/316534

  72. Zienkiewicz, O.C., Taylor, R.L., Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 3. McGraw-Hill, London (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parand, K., Hemami, M. & Hashemi-Shahraki, S. Two Meshfree Numerical Approaches for Solving High-Order Singular Emden–Fowler Type Equations. Int. J. Appl. Comput. Math 3 (Suppl 1), 521–546 (2017). https://doi.org/10.1007/s40819-017-0368-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0368-7

Keywords

Mathematics Subject Classification

Navigation