Skip to main content
Log in

Reflection of photothermoelastic waves in a semiconductor material with different relaxations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, reflection of thermoelastic waves in semiconducting medium is studied. The selected elastic medium is a half-space with an exponentially decaying heat source. Firstly, the governing equations are formulated with the help of generalized thermoelastic model initiated by Green and Lindsay. Interface of the solid is exposed to a heat flow having an exponentially decaying pulse. Harmonic wave solution is adopted to find the solution. It is found that, for the selected half-space model, four types of coupled waves are generated after reflection, namely quasi-longitudinal wave \({\text{P}}_{\text{q}}\), quasi-transverse wave \({\text{SV}}_{\text{q}}\), quasi-thermal wave \({\text{T}}_{\text{q}}\), and quasi-plasma wave \({\text{PL}}_{\text{q}}\). Different characteristics of waves subjected to angular frequency of incident wave are calculated numerically for the medium. Effect of the incident angle on amplitudes of reflected waves has also been calculated in terms of amplitude ratios for a semiconductor like material. Comparison of results obtained in the context three different models of thermoelastic theories is also presented, and the findings are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H W Lord and Y Shulman J. Mech. Phys. Solids 15 299 (1967)

    Article  ADS  Google Scholar 

  2. A Green and K Lindsay J. Elast. 2 1 (1972)

    Article  Google Scholar 

  3. M A Biot J. Appl. Phys. 27 240 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  4. D Todorović Rev. Sci. Instrum. 74 578 (2003)

    Article  ADS  Google Scholar 

  5. D Todorović Rev. Sci. Instrum. 74 582 (2003)

    Article  ADS  Google Scholar 

  6. Y Song, B Cretin, D M Todorovic and P Vairac J. Phys. D Appl. Phys. 41 155106 (2008)

    Article  ADS  Google Scholar 

  7. J Opsal and A Rosencwaig Appl. Phys. Lett. 47 498 (1985)

    Article  ADS  Google Scholar 

  8. A Rosencwaig, J Opsal and D L Willenborg Appl. Phys. Lett. 43 166 (1983)

    Article  ADS  Google Scholar 

  9. M A Ezzat, A S El-Karamany and M A Fayik J. Therm. Stress. 35 637 (2012)

    Article  Google Scholar 

  10. A M Zenkour, J. Therm. Stress. 40 198 (2017)

    Google Scholar 

  11. A Sur and M Kanoria J. Solid Mech. 6 54 (2014)

    Google Scholar 

  12. A M Zenkour Res. Phys. 11 929 (2018)

    Article  Google Scholar 

  13. S Deswal and K K Kalkal Wave Motion 51 100 (2014)

    Article  MathSciNet  Google Scholar 

  14. S Santra, N C Das, R Kumar and A Lahiri J. Therm. Stresses. 38 309 (2015)

    Article  Google Scholar 

  15. D S Mashat, A M Zenkour and A E Abouelregal Mech. Adv. Mater. Struct. 22 925 (2015)

    Article  Google Scholar 

  16. E M Hussein J. Therm. Stresses 38 133 (2015)

    Article  Google Scholar 

  17. A M Zenkour and A E Abouelregal Arch. Mech. 67 53 (2015)

    Google Scholar 

  18. Y Wang, D Liu and Q Wang Acta Mech. Solid. Sin. 28 285 (2015)

    Article  Google Scholar 

  19. H H Sherief and A M Abd El-Latief Math. Mech. Solids 20 512 (2015)

    Article  Google Scholar 

  20. A M Zenkour Acta Mech. 229 3671 (2018)

    Google Scholar 

  21. M Marin Meccanica 51 1127 (2016)

    Article  Google Scholar 

  22. A M Zenkour, M A Kutbi Int. J. Heat Mass Transf. 143 118568 (2019)

    Google Scholar 

  23. A M Zenkour and M A Kutbi Int. J. Heat Mass Transf. 143 118568 (2019)

    Article  Google Scholar 

  24. A M Zenkour J Phys. Chem. Solids 137 109213 (2020)

    Article  Google Scholar 

  25. Y Song, D M Todorovic, B Cretin, P Vairac Int. J. Solids Struct. 47 1871 (2010)

    Article  Google Scholar 

  26. Y Song, J Bai and Z Ren Int. J. Thermophys. 33 1270 (2012)

    Article  ADS  Google Scholar 

  27. Y Song, J Bai and Z Ren Acta Mech. 223 1545 (2012)

    Article  Google Scholar 

  28. I A Abbas, K Aly and F S Alzahrani J. Adv. Phys. 6 402 (2017)

    Article  Google Scholar 

  29. A D Hobiny and I A Abbas Mech. Time-Depend. Mater. 21 61 (2017)

    Article  ADS  Google Scholar 

  30. K Sharma Multi. Model. Mat. Str. 8 3 (2012)

    Google Scholar 

  31. S Sharma, K Sharma and R R Bhargava Mat. Phys. Mech. 16 1 (2013)

    Google Scholar 

  32. R Kumar, A Vashisth and S Ghangas Mat. Phys. Mech. 35 1 (2018)

    Google Scholar 

  33. A M Zenkour Compos. Struct. 212 346 (2019)

    Article  Google Scholar 

  34. A M Zenkour J. Phys. Chem. Solids 132 56 (2019)

    Article  ADS  Google Scholar 

  35. F S Alzahrani and I A Abbas Thin-Walled Struct. 129 342 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahangir, A., Tanvir, F. & Zenkour, A.M. Reflection of photothermoelastic waves in a semiconductor material with different relaxations. Indian J Phys 95, 51–59 (2021). https://doi.org/10.1007/s12648-020-01690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01690-x

Keywords

PACS Nos.

Navigation