Skip to main content
Log in

Predictive models for identification of parameters of seismic vibrations by applying the theory of covariance functions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The paper analyses an opportunity to develop predictive models for identification of parameters of seismic vibrations by applying statistical processing of measurement data. The calculations used measurement data arrays according to vectors E, N and Z obtained from four seismic stations (India EVBH, Indonesia LUWIBH, Italy CERABN and Turkey BNHBH). The Doppler method and the theory of covariance functions were applied for analysing the measurement data arrays. The trend of seismic vibration intensity vectors was estimated by applying the least-squares method. In addition, the said procedure partially eliminates random errors of the measurement data from the stations. Using the intensity variation of seismic vibration vectors E, N and Z on the timescale, the estimates of autocovariance and cross-covariance functions of seismic vibration vectors were calculated by changing the quantised interval on the time scale. The average values of parameter z in the Doppler formula were calculated according to the created formula by applying the expressions of cross-covariance functions of the algebraic addition of the relevant vectors and a single vector. By applying the values of parameter z from the Doppler formula, the approximate value of the velocity of reciprocal movement of seismic vectors was calculated. In the calculations, the software developed on the basis of the MATLAB program package operators was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M Kanao Seismic Waves - Research and Analysis (InTech) (2012). ISBN 978-953-307-944-8

  2. M Kanao Tectonophysics 270 43 (1997)

    Article  ADS  Google Scholar 

  3. M Kanao, A Kubo, T Shibutani, H Negishi and Y Tono R. Soc. N. Z. Bull. 35 485 (2002)

    Google Scholar 

  4. H Emmerich, J Zwielich and G Müller Geophys. J. Int. 113 225 (1993)

    Article  ADS  Google Scholar 

  5. B L N Kennett, E R Engdahl and R Buland Geophys. J. Int. 122 108 (1995)

    Article  ADS  Google Scholar 

  6. B T Aagaard, J F Hall and T H Heaton Earthq. Spectra 17 177 (2001)

    Article  Google Scholar 

  7. J O A Robertsson, B Bednar, J Blanch, C Kostov and D van Manen Geophysics 72 SM1 (2007)

    Article  Google Scholar 

  8. J Virieux, S Operto, H Ben Hadj Ali, R Brossier, V Etienne, F Sourbier, L Giraud and A Haidar Geophysics 28 538 (2009)

    Google Scholar 

  9. P Bormann, K Klinge, S Wendt New Manual of Seismological Observatory Practice 2 (NMSOP-2) (Potsdam: Deutsches GeoForschungsZentrum GFZ, p. 1) (2014). https://doi.org/10.2312/GFZ.NMSOP-2_ch11

  10. C Chapman Fundamentals of seismic waves propagation (Cambridge, England: Cambridge University Press) (2004)

    Book  Google Scholar 

  11. J Dewey and P Byerly Bull. Seismol. Soc. Am. 59 183 (1969)

    Google Scholar 

  12. P M Shearer Introduction to Seismology (Cambridge: Cambridge University Press) (1999). ISBN 0-521-66953-7

  13. A Kritski, A P Vincent, D A Yuen and T Carlsen Geophysics 72 V1 (2007). ISSN: 0016-8033.3

  14. S A P Rosyidi Ph. D. Thesis (The National University of Malaysia) (2009)

  15. K Wapenaar Geophys. Rev. Lett. 93 254301 (2004)

    Article  Google Scholar 

  16. P Roux Geophys. Rev. Lett. 32 L19303 (2005)

    Article  Google Scholar 

  17. G D Bensen, M H Ritzwoller, M P Barmin, A L Levshin, F Lin, M P Moschetti, N M Shapiro and Y Yang Geophys. J. Int. 169 1239 (2007)

    Article  ADS  Google Scholar 

  18. P Gouedard, L Stehly, F Brenguier, M Campillo, Y C de Verdiere, E Larose, L Margerin, P Roux, F J Sanchez-Sesma, N M Shapiro and R L Weaver Geophys. Prospect. 56 375 (2008)

    Article  ADS  Google Scholar 

  19. P Cupillard, L Stelhy and B Romanowicz Geophys. J. Int. 184 1397 (2011)

    Article  ADS  Google Scholar 

  20. P Poli, H Pedersen and M Campillo Geophys. J. Int. 188 549 (2012)

    Article  ADS  Google Scholar 

  21. K Nishida Geophys. Rev. Lett. 40 1691 (2013)

    Article  ADS  Google Scholar 

  22. O Nishizawa, T Satoh, X Lei and Y Kuwahara Bull. Seismol. Soc. Am. 87 809 (1997)

    Google Scholar 

  23. S K Midya and P K Gole Indian J. Phys. 88 1227 (2014)

    Article  ADS  Google Scholar 

  24. I Sukma and Z Z Abidin Indian J. Phys. 91 595 (2017)

    Article  ADS  Google Scholar 

  25. P Peddi Naidu, T Madhavi Latha, D N Madhusudhana Rao, M Indira Devi Indian J. Phys. 91 1467 (2017)

    Article  ADS  Google Scholar 

  26. V Natarajan, V Bobrovskiy and S Shopin Indian J. Phys. (2019).https://doi.org/10.1007/s12648-019-01450-6

    Article  Google Scholar 

  27. A Sas-Uhrynowski, H Karatayev, S Mroczek, O Karagodina Prace IGiK XLVII 100 25 (2000)

    Google Scholar 

  28. J Marianiuk, J Reda Pol. Acad. Sci. C-79 110 (2000)

    Google Scholar 

  29. A Czyszek, J Czyszek Pol. Acad. Sci. C-87 110 (2002)

    Google Scholar 

  30. H Kahmen Elektronische Messverfahren in der Geodäsie. Grundlagen und Anwendungen (Weichmann: Verlag Karsruhe) (1978)

    Google Scholar 

  31. J Skeivalas, V Turla and M Jurevicius Indian J. Phys. 93 1 (2019)

    Article  ADS  Google Scholar 

  32. K R Koch (2000) Einführung in die Byes-Statistik (Berlin: Springer)

    Google Scholar 

  33. J Skeivalas, E K Paršeliūnas (2013) Opt. Eng. 52 073106

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Šlikas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skeivalas, J., Paršeliūnas, E.K., Šlikas, D. et al. Predictive models for identification of parameters of seismic vibrations by applying the theory of covariance functions. Indian J Phys 95, 1373–1380 (2021). https://doi.org/10.1007/s12648-019-01665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01665-7

Keywords

PACS Nos.

Navigation