Skip to main content
Log in

Quasiperiodic waves, solitary waves and asymptotic properties for a generalized (3 + 1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a generalized (3 + 1)-dimensional variable-coefficient BKP equation, which can be used to describe the propagation of nonlinear waves in fluid mechanics and other fields. With the aid of binary Bell’s polynomials, an effective and straightforward method is presented to explicitly construct its bilinear representation with an auxiliary variable. Based on the bilinear formalism, the soliton solutions and multi-periodic wave solutions are well constructed. Furthermore, the tanh method and the tan method are employed to construct more traveling wave solutions of the equation. Finally, the asymptotic properties of the multi-periodic wave solutions are systematically analyzed to reveal the connection between periodic wave solutions and soliton solutions. It is interesting that the periodic waves tend to solitary waves under a limiting procedure. Our results can be used to enrich the dynamical behavior of higher-dimensional nonlinear wave fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons; Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Graduate Texts in Mathematics, vol. 81. Springer, New York (1989)

    Book  MATH  Google Scholar 

  3. Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  4. Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  5. Wazwaz, A.M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. Math. Comput. 154(3), 713–723 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Wazwaz, A.M.: Partial Differential Equations: Methods and Applications. Balkema Publishers, Rotterdam (2002)

    MATH  Google Scholar 

  7. Hu, X.B., Li, C.X., Nimmo, J.J.C., Yu, G.F.: An integrable symmetric (2 + 1)-dimensional Lotka–Volterra equation and a family of its solutions. J. Phys. A Math. Gen. 38, 195–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, D.J., Chen, D.Y.: Some general formulas in the Sato’s theory. J. Phys. Soc. Jpn. 72(2), 448–449 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma, W.X., You, Y.C.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357, 1753–1778 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tian, B., Gao, Y.T.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: new transformation with burstons, brightons and symbolic computation. Phys. Lett. A 359, 241–248 (2006)

    Article  Google Scholar 

  11. Wazwaz, A.M.: Multiple-soliton solutions and multiplesingular soliton solutions for two higher-dimensional shallow water wave equations. Appl. Math. Comput. 211, 495–501 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Wazwaz, A.M.: Multiple soliton solutions and multiple singular soliton solutions for the (3 + 1)-dimensional Burgers equations. Appl. Math. Comput. 204, 942–948 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1–2), 345–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, L.L., Tian, S.F., Wang, X.B., Zhang, T.T.: Rogue waves, homoclinic breather waves and soliton waves for the (2 + 1)-dimensional B-type Kadomtsev–Petviashvili equation. Appl. Math. Lett. 65, 90–97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, G.W., Xu, T.Z., Johnson, S., Biswas, A.: Solitons and Lie group analysis to an extended quantum Zakharov-Kuznetsov equation. Astrophys Space Sci 349, 317–327 (2014)

    Article  Google Scholar 

  16. Wang, G.W., Xu, T.Z., Ebadi, G., Johnson, S., Strong, A.J., Biswas, A.: Singular solitons, shock waves, and other solutions to potential KdV equation. Nonlinear Dyn. 76, 1059–1068 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, Y., Song, Y., Cheng, L., Ge, J.Y., Wei, W.W.: Exact solutions and Painlev analysis of a new (2 + 1)-dimensional generalized KdV equation. Nonlinear Dyn. 68, 445–458 (2012)

    Article  MATH  Google Scholar 

  18. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)

    Article  MathSciNet  Google Scholar 

  19. Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)

    Article  MATH  Google Scholar 

  20. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    Article  Google Scholar 

  21. Wang, L., Gao, Y.T., Meng, D.X., Gai, X.L., Xu, P.B.: Soliton-shape-preserving and soliton-complex interactions for a (1 + 1)-dimensional nonlinear dispersive-wave system in shallow water. Nonlinear Dyn. 66, 161–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  MATH  Google Scholar 

  23. Wang, X.B., Tian, S.F., Xu, M.J., Zhang, T.T.: On integrability and quasi-periodic wave solutions to a (3 + 1)-dimensional generalized KdV-like model equation. Appl. Math. Comput. 283, 216–233 (2016)

    MathSciNet  Google Scholar 

  24. Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. Lond. A 472, 20160588(22pp) (2016)

    Google Scholar 

  25. Xu, M.J., Tian, S.F., Tu, J.M., Ma, P.L., Zhang, T.T.: On quasiperiodic wave solutions and integrability to a generalized (2 + 1)-dimensional Korteweg–de Vries equation. Nonlinear Dyn. 82, 2031–2049 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tu, J.M., Tian, S.F., Xu, M.J., Song, X.Q., Zhang, T.T.: Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3 + 1)-dimensional nonlinear wave in liquid with gas bubbles. Nonlinear Dyn. 83, 1199–1215 (2016)

    Article  MATH  Google Scholar 

  27. Tian, S.F., Ma, P.L.: On the quasi-periodic wave solutions and asymptotic analysis to a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation. Commun. Theor. Phys. 62, 245 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, M.J., Tian, S.F., Tu, J.M., Zhang, T.T.: Bäcklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2 + 1)-dimensional Boussinesq equation. Nonlinear Anal. 31, 388–408 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nakamura, A.: A direct method of calculating periodic wave solutions to nonlinear evolution equations. Exact one and two-periodic wave solution of the coupled bilinear equations. J. Phys. Soc. Jpn. 48, 1701–1705 (1980)

    MATH  Google Scholar 

  30. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1834)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gilson, C., Lambert, F., Nimmo, J.J.C.: On the combinatorics of the Hirota \(D\)-operators. Proc. R. Soc. Lond. A 452, 223–234 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lambert, F., Springael, J., Willox, R.: Construction of Bäcklund transformations with binary Bell polynomials. J. Phys. Soc. Jpn. 66, 2211–2213 (1997)

    Article  MATH  Google Scholar 

  33. Fan, E.G., Hon, Y.C.: On a direct procedure for the quasi-periodic wave solutions of the supersymmetric Ito is equation. Rep. Math. Phys. 66, 355–365 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fan, E.G., Hon, Y.C.: A kind of explicit quasi-periodic solution and its limit for the Toda lattice equation. Mod. Phys. Lett. 22, 547–553 (2008)

    Article  MATH  Google Scholar 

  35. Fan, E.G., Hon, Y.C.: Super extension of Bell polynomials with applications to supersymmetric equations. J. Math. Phys. 53, 013503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Demiray, S., Tascan, F.: Quasi-periodic solutions of (3 + 1) generalized BKP equation by using Riemann theta functions. Appl. Math. Comput. 273, 131–141 (2016)

    MathSciNet  Google Scholar 

  37. Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950–959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ma, W.X., Zhou, R.G., Gao, L.: Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2 + 1) dimensions. Mod. Phys. Lett. A 24, 1677–1688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China 8(5), 1139–1156 (2013)

  40. Chow, K.W.: A class of exact, periodic solutions of nonlinear envelope equations. J. Math. Phys. 36, 4125–4137 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Y., Chen, Y.: Binary Bell polynomial manipulations on the integrability of a generalized (2 + 1)-dimensional Korteweg–de Vries equation. J. Math. Anal. Appl. 400, 624–634 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Miao, Q., Wang, Y.H., Chen, Y., Yang, Y.Q.: PDE Bell II A Maple package for finding bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation laws of the KdV-type equations. Comput. Phys. Commun. 185, 357–367 (2014)

    Article  MATH  Google Scholar 

  43. Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl. 371, 585–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tian, S.F., Zhang, H.Q.: A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations. Commun. Nonlinear Sci. Numer. Simul. 16, 173–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation. J. Phys. A Math. Theor. 45, 055203 (29pp) (2012)

    MathSciNet  MATH  Google Scholar 

  46. Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient forced Korteweg–de Vries equation in fluids. Stud. Appl. Math. 132, 212–246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the (1 + 1)-dimensional and (2+1)-dimensional Ito equation. Chaos Solitons Fractals 47, 27–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Abudiab, M., Khalique, C.M.: Exact solutions and conservation laws of a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation. Adv. Differ. Equ. 2013, 221 (2013)

    Article  MathSciNet  Google Scholar 

  49. Wazwaz, A.M.: Two forms of (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation: multiple-soliton solutions. Phys. Scr. 86, 035007 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work was supported by the Fundamental Research Fund for Talents Cultivation Project of the China University of Mining and Technology (Project No. YC150003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou-Fu Tian or Tian-Tian Zhang.

Additional information

This work was supported by the Fundamental Research Fund for Talents Cultivation Project of the China University of Mining and Technology under the Grant No. YC150003.

Appendix: Riemann theta function periodic waves

Appendix: Riemann theta function periodic waves

In order to consider three-periodic wave solutions of Eq. (1). By taking \(N=3\), Riemann theta function takes the following form

$$\begin{aligned}&\vartheta (\xi ,\tau )= \vartheta (\xi _{1},\xi _{2},\xi _{3},\tau )=\sum _{n\in Z^{3}}\exp (\pi i\langle \tau n,n\rangle \nonumber \\&\qquad +\,2\pi i\langle \xi ,n\rangle ), \end{aligned}$$
(59)

in which \(n=(n_{1},n_{2},n_{3})^{T}\in Z^{3}\), \(\xi =(\xi _{1},\xi _{2},\xi _{3})\in C^{3}\), \(\xi _{i}=k_{i} x+l_{i}y+r_{i}z+{\mathcal {M}}_{i} t +\varepsilon _{i},(i=1,2,3)\). \(-i\tau \) is a positive-define and real-valued symmetric \(2\times 2\) matrix, which is of explicit form

$$\begin{aligned} \tau =\left( \begin{array}{ccc} \tau _{11} &{} \quad \tau _{12} &{}\quad \tau _{13} \\ \tau _{21} &{}\quad \tau _{22} &{} \quad \tau _{23} \\ \tau _{31} &{} \quad \tau _{321} &{} \quad \tau _{33} \\ \end{array} \right) , \end{aligned}$$
(60)

in which \({\text {Im}}(\tau _{ij})>0\), \(i=j=1,2,3\).

Theorem 6.1

[43,44,45,46,47] Supposing that \(\vartheta (\xi _{1},\xi _{2},\xi _{3},\tau )\) is a multi-dimensional Riemann theta function as \(N=3\) and \(\xi _{i}=k_{i}x+l_{i}y+r_{i}z+{\mathcal {M}}_{i}t+\varepsilon _{i}\), then \(k_{i},l_{i},r_{i},{\mathcal {M}}_{i}(i=1,2,3)\) hold the following expressions

$$\begin{aligned}&\sum _{n\in Z^{3}}H\left( 2\pi i\langle 2n-\theta _{i},k_{i}\rangle ,\ldots ,2\pi i\langle 2n-\theta _{i},{\mathcal {M}}_{i}\rangle \right) \nonumber \\&\quad \exp \left[ \pi i(\langle \tau (n-\theta _{i}),n-\theta _{i}\rangle +\langle \tau n,n\rangle \right] =0, \end{aligned}$$
(61)

in which \(\theta _{i}=\left( \begin{array}{c} \theta _{i}^{1} \\ \theta _{i}^{2} \\ \theta _{i}^{3} \\ \end{array} \right) \) and \(\theta _{1}=\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \), \(\theta _{2}=\left( \begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array} \right) \), \(\theta _{3}=\left( \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \right) \), \(\theta _{4}=\left( \begin{array}{c} 0 \\ 1 \\ 1 \\ \end{array} \right) \), \(\theta _{5}=\left( \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right) \), \(\theta _{6}=\left( \begin{array}{c} 1 \\ 0 \\ 1 \\ \end{array} \right) \), \(\theta _{7}=\left( \begin{array}{c} 1 \\ 1 \\ 0 \\ \end{array} \right) \), \(\theta _{8}=\left( \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array} \right) \), \(i=1,2,3,\dots ,8\).

According to the above Theorem 6.1 and Eq. (18), the parameters \(k_{i},l_{i},r_{i},{\mathcal {M}}_{i}\) should provide the following expressions

$$\begin{aligned}&\sum _{(n_{1},n_{2},n_{3})\in Z^{3}}\left[ -4\pi ^{2}\left( \langle 2n-\theta _{i},k\rangle +\langle 2n -\theta _{i},l\rangle \right. \right. \nonumber \\&\left. \left. \quad +\,\langle 2n-\theta _{i},r\rangle \right) \langle 2n-\theta _{i},{\mathcal {M}}\rangle \right. \nonumber \\&\left. \quad +\,16\alpha \pi ^{4}\langle 2n-\theta _{i},k\rangle ^{3}\langle 2n-\theta _{i},l\rangle \right. \nonumber \\&\quad -\,12\alpha u_{0}\pi ^{2}\langle 2n-\theta _{i},k\rangle ^{2}\nonumber \\&\left. \quad -\, 4\gamma \pi ^{2}\left( \langle 2n-\theta _{i},k\rangle ^{2} +\langle 2n-\theta _{i},r\rangle ^{2}\right) +{\mathcal {C}}\right] \nonumber \\&\quad \exp \left[ \pi i(\langle \tau (n-\theta _{i}),n-\theta _{i}\rangle +\langle \tau n,n\rangle \right] =0. \end{aligned}$$
(62)

The above equation can be written in a new form

$$\begin{aligned} \left( \begin{array}{ccccc} h_{11} &{} \quad h_{12} &{}\quad h_{13} &{}\quad h_{14} &{} \quad h_{15} \\ h_{21} &{}\quad h_{22} &{} \quad h_{23} &{}\quad h_{24} &{}\quad h_{25} \\ h_{31} &{}\quad h_{32} &{}\quad h_{33} &{}\quad h_{34} &{}\quad h_{35} \\ h_{41} &{}\quad h_{42} &{}\quad h_{43} &{}\quad h_{44} &{}\quad h_{45} \\ h_{51} &{}\quad h_{52} &{}\quad h_{53} &{}\quad h_{54} &{}\quad h_{55} \\ \end{array} \right) \left( \begin{array}{c} {\mathcal {M}}_{1} \\ {\mathcal {M}}_{2} \\ {\mathcal {M}}_{3} \\ u_{0} \\ {\mathcal {C}} \\ \end{array} \right) = \left( \begin{array}{c} b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} \\ \end{array} \right) ,\nonumber \\ \end{aligned}$$
(63)

where

$$\begin{aligned}&h_{i1}=\sum _{n\in Z^{3}}-4\pi ^{2}\left( \langle 2n-\theta _{i},k\rangle +\langle 2n-\theta _{i},l\rangle \right. \nonumber \\&\left. \qquad +\,\langle 2n-\theta _{i},r\rangle \right) \left( 2n_{1}-\theta _{i}^{1}\right) {\mathscr {U}}_{i},\nonumber \\&h_{i2}=\sum _{n\in Z^{3}}-4\pi ^{2}\left( \langle 2n-\theta _{i},k\rangle +\langle 2n-\theta _{i},l\rangle \right. \nonumber \\&\left. \quad \qquad +\,\langle 2n-\theta _{i},r\rangle \right) \left( 2n_{2}-\theta _{i}^{2}\right) {\mathscr {U}}_{i},\nonumber \\&h_{i3}=\sum _{n\in Z^{3}}-4\pi ^{2}\left( \langle 2n-\theta _{i},k\rangle +\langle 2n-\theta _{i},l\rangle \right. \nonumber \\&\left. \quad \qquad +\,\langle 2n-\theta _{i},r\rangle \right) \left( 2n_{3}-\theta _{i}^{3}\right) {\mathscr {U}}_{i},\nonumber \\&h_{i4}=\sum _{n\in Z^{3}}-12\alpha \pi ^{2}\langle 2n-\theta _{i}\rangle ^{2}{\mathscr {U}}_{i},\nonumber \\&h_{i5}=\sum _{n\in Z^{3}}{\mathscr {U}}_{i},\nonumber \\&b_{i}=\sum _{n\in Z^{3}}-16\alpha \pi ^{4}\langle 2n-\theta _{i},k\rangle ^{3}\langle 2n-\theta _{i},l\rangle \nonumber \\&\qquad \quad +4\gamma \pi ^{2}\left( \langle 2n-\theta _{i},k\rangle ^{2}+\langle 2n-\theta _{i},r\rangle ^{2}\right) ,\nonumber \\&{\mathscr {U}}_{i}={\mathscr {A}}_{1}^{n_{1}^{2}+(n_{1}-\theta _{i}^{1})^{2}}{\mathscr {A}}_{2}^{n_{2}^{2}+(n_{1}-\theta _{i}^{2})^{2}} {\mathscr {A}}_{3}^{n_{3}^{2}+(n_{3}-\theta _{i}^{3})^{2}}\nonumber \\&\qquad \quad {\mathscr {A}}_{12}^{n_{1}n_{2}+(n_{1}-\theta _{i}^{1})(n_{2}-\theta _{i}^{2})} {\mathscr {A}}_{13}^{n_{1}n_{3}+(n_{1}-\theta _{i}^{1})(n_{3}-\theta _{i}^{3})} \nonumber \\&\qquad \quad {\mathscr {A}}_{23}^{n_{2}n_{3}+(n_{2}-\theta _{i}^{2})(n_{3}-\theta _{i}^{3})},\nonumber \\&{\mathscr {A}}_{1}=e^{\pi i\tau _{11}},\quad {\mathscr {A}}_{2}=e^{\pi i\tau _{22}},\quad {\mathscr {A}}_{3}=e^{\pi i\tau _{12}}, \nonumber \\&{\mathscr {A}}_{12}=e^{2\pi i\tau _{12}},\quad {\mathscr {A}}_{13}=e^{2\pi i\tau _{13}},\nonumber \\&{\mathscr {A}}_{23}=e^{2\pi i\tau _{23}}, \end{aligned}$$
(64)

We solve the above system and we can obtain the three-periodic wave solution as

$$\begin{aligned} u=u_{0}y+\frac{6\alpha }{\beta }\partial _{x} \ln \vartheta (\xi _{1},\xi _{2},\xi _{3},\tau ), \end{aligned}$$
(65)

in which \(\vartheta (\xi _{1},\xi _{2},\xi _{3},\tau )\) and \(({\mathcal {M}}_{1},{\mathcal {M}}_{2},{\mathcal {M}}_{3},u_{0},{\mathcal {C}})^{T}\) are known by (59). The other parameters \(k_{i},l_{i},r_{i},\varepsilon _{i},\tau _{ij}(i,j=1,2,3)\) are free.

Summing up the above analysis for the three-periodic wave solution, the following assertion is constructed.

Theorem 6.2

Supposing that \(\vartheta (\xi _{1},\xi _{2},\xi _{3},\tau )\) is a Riemann theta function with \(N=3\) and \(\xi _{i}=k_{i}x+l_{i}y+r_{i}z+{\mathcal {M}}_{i}t+\varepsilon _{i}(i=1,2,3)\). The VC-BKP equation (i.e., Eq. (1)) admits a three-periodic wave solution as follows

$$\begin{aligned} u=u_{0}y+\frac{6\alpha }{\beta }\partial _{x} \ln \vartheta (\xi _{1},\xi _{2},\xi _{3},\tau ), \end{aligned}$$
(66)

where \(u_{0}\) and \(\vartheta (\xi _{1},\xi _{2},\xi _{3},\tau )\) fulfill the expression (63) and (63). In addition, \(\theta _{i}=\left( \begin{array}{c} \theta _{i}^{1} \\ \theta _{i}^{2} \\ \theta _{i}^{3} \\ \end{array} \right) \) and, \(\theta _{i_{1}}^{1}=0\), \(\theta _{j_{1}}^{1}=1\), with \(i_{1}=1,2,3,4,j_{1}=5,6,7,8\), \(\theta _{i_{2}}^{2}=0\), \(\theta _{j_{2}}^{2}=1\), with \(i_{2}=1,2,5,6,j_{2}=3,4,7,8\), \(\theta _{i_{3}}^{3}=0\), \(\theta _{j_{3}}^{3}=1\), with \(i_{3}=1,3,5,7,j_{2}=2,4,6,8\). The other parameters \(k_{i},l_{i},r_{i},\varepsilon _{i},\tau _{ij}(i,j=1,2,3)\) are arbitrary parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XB., Tian, SF., Feng, LL. et al. Quasiperiodic waves, solitary waves and asymptotic properties for a generalized (3 + 1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation. Nonlinear Dyn 88, 2265–2279 (2017). https://doi.org/10.1007/s11071-017-3375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3375-7

Keywords

Navigation