Skip to main content

Advertisement

Log in

Voglibose attenuates cognitive impairment, Aβ aggregation, oxidative stress, and neuroinflammation in streptozotocin-induced Alzheimer’s disease rat model

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease hallmarked by Amyloid-β (Aβ) aggregation, cognitive impairment, and neuronal and synaptic loss. In this study, AD was induced in male Wistar rats (n = 6) by the administration of intracerebroventricular-streptozotocin (ICV-STZ-3 mg/kg/day), and Voglibose (Vog) was administered at various doses (10, 25, and 50 mg/kg), while Galantamine (3 mg/kg) acted as a reference standard drug. Behavioral alterations in both spatial and non-spatial memory functions were evaluated in the experimental rats. At the end of the study, all experimental rats were sacrificed, and their brain parts, the cortex and hippocampus, were subjected to biochemical, western blot, and histopathological analysis. In our study results, the statistically significant dose-dependent results from the behavioral tests show the Voglibose-treated groups significantly improved (p < 0.0001) spatial and non-spatial memory functions when compared with ICV-STZ-treated group. Meanwhile, when compared with ICV-STZ-treated rats, treatment with Voglibose (10, 25, and 50 mg/kg) showed the activities of both acetylcholinesterase (AChE) and malondialdehyde (MDA) were significantly attenuated (p < 0.0001), while the operation of antioxidant enzymes was considerably enhanced (p < 0.0001). The molecular estimation showed that it significantly attenuates (p < 0.0001) the TNF-α, IL-1β, and CRP activity, and the western blot results demonstrate the significantly attenuated Aβ aggregation. The histopathological results showed that the Voglibose treatment had an effective improvement in clear cytoplasm and healthy neuronal cells. In conclusion, our results suggest that Voglibose has potent neuroprotective effects against the ICV-STZ-induced AD model. Furthermore, these results support the possibility of Voglibose as a therapeutic approach to improving cognitive function, suggesting that controlling Aβ aggregation might be a novel target for the development of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Agrawal M, Perumal Y, Bansal S, Arora S, Chopra K (2020) Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-Kinase dependent pathway. Food Chem Toxicol 145:111684

    Article  CAS  PubMed  Google Scholar 

  • Ahn Y, Seo J, Park J, Won J, Yeo HG, Kim K, Jeon CY, Huh JW, Lee SR, Lee DS, Lee Y (2020) Synaptic loss and amyloid-beta alterations in the rodent HS induced by streptozotocin injection into the cisterna magna. Lab Anim Res 36:1–6

    Article  Google Scholar 

  • Akhtar A, Bishnoi M, Sah SP (2020a) Sodium orthovanadate improves learning and memory in intracerebroventricular-streptozotocin rat model of Alzheimer’s disease through modulation of brain insulin resistance induced tau pathology. Brain Res Bull 1(164):83–97

    Article  Google Scholar 

  • Akhtar A, Dhaliwal J, Saroj P, Uniyal A, Bishnoi M, Sah SP (2020b) Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer’s-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacol 28:385–400

    Article  CAS  Google Scholar 

  • Arezoumandan S, Xie SX, Cousins KA, Mechanic-Hamilton DJ, Peterson CS, Huang CY, Ohm DT, Ittyerah R, McMillan CT, Wolk DA, Yushkevich P (2022) Regional distribution and maturation of tau pathology among phenotypic variants of Alzheimer’s disease. Acta Neuropathol 144(6):1103–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Association A (2017) Alzheimer’s disease facts and figures. Alzheimers Dement 13(4):325–373

    Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73(3):1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Gang X, Liu Y, Wang G, Zhao X, Wang G (2020) Mitochondrial dysfunction plays a key role in the development of neurodegenerative diseases in diabetes. Am J Physiol Endocrinol 318(5):E750–E764

    Article  CAS  Google Scholar 

  • Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55(22):10282–10286

    Article  CAS  PubMed  Google Scholar 

  • Claiborne AJ (1985) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  • Conrad CD, Galea LA, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine treatment. Behav Neurosci 110(6):1321

    Article  CAS  PubMed  Google Scholar 

  • Derosa G, Maffioli P (2012) Mini-Special Issue paper Management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice. Arch Med Sci 8 (5): 899–906

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    Article  CAS  PubMed  Google Scholar 

  • Gallego Villarejo L, Bachmann L, Marks D, Brachthauser M, Geidies A, Muller T (2022) Role of intracellular amyloid β as pathway modulator, biomarker, and therapy target. Int J Mol Sci 23(9):4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analyt Biochem Anal Biochem 126(1):131–138

    Article  CAS  Google Scholar 

  • Hatai J, Motiei L, Margulies D (2019) Analyzing amyloid beta aggregates with a combinatorial fluorescent molecular sensor. J Amer Chem Soci 139(6):2136–2139

    Article  Google Scholar 

  • Jayant S, Sharma BM, Bansal R, Sharma B (2016) Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer’s disease. Pharmacol Biochem Behav 1(40):39–50

    Article  Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione NA, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4 bromobenzene oxide as the hepatotoxic metabolite. Pharmacol 11(3):151–169

    Article  CAS  Google Scholar 

  • Kareem RT, Abedinifar F, Mahmood EA, Ebadi AG, Rajabi F, Vessally E (2021) The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s agents: highlights from 2010 to 2020. RSC Adv 11(49):30781–30797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthick C, Nithiyanandan S, Essa MM, Guillemin GJ, Jayachandran SK, Anusuyadevi M (2019) Time-dependent effect of oligomeric amyloid-β (1–42)-induced hippocampal neurodegeneration in rat model of Alzheimer’s disease. Neurol Res 41(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Lee YJ, You YH, Moon MK, Yoon KH, Ahn YB, Ko SH (2019) Effect of sodium-glucose cotransporter 2 inhibitor, empagliflozin, and α-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes. J Cell Biochem 120(5):8534–8546

    Article  CAS  PubMed  Google Scholar 

  • King TE, Howard RL (1976) Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. I Meth Enzym 10:275–294

    Article  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophy 186(1):189–195

    Article  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71(4):952–958

    Article  CAS  PubMed  Google Scholar 

  • Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17(3):157–172

    Article  PubMed  Google Scholar 

  • Leyane TS, Jere SW, Houreld NN (2022) Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int J Mol Sci 23(13):7273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) of these enzymes than MQ. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Dong Y, Tucker D, Wang R, Ahmed ME, Brann D, Zhang Q (2017) Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. J Alzheimer’s Dis 56(4):1469–1484

    Article  CAS  Google Scholar 

  • Ma M, Liu Z, Gao N, Dong K, Pi Z, Kang L, Du X, Ren J, Qu X (2021) Near-infrared target enhanced peripheral clearance of amyloid-β in Alzheimer’s disease model. Biomater 1(276):121065

    Article  Google Scholar 

  • Malik R, Kalra S, Bhatia S, Al Harrasi A, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM (2022) Overview of therapeutic targets in management of dementia. Biomed Pharmacother 1(152):113168

    Article  Google Scholar 

  • Mishra SK, Singh S, Shukla S, Shukla R (2018) Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via regulating neuroinflammation and insulin signaling in adult rats. Neurochemistry International Neurochem Int 1(113):56–68

    Article  Google Scholar 

  • Moritoh Y, Takeuchi K, Hazama M (2010) Combination treatment with alogliptin and voglibose increases active GLP-1 circulation, prevents the development of diabetes and preserves pancreatic beta-cells in prediabetic db/db mice. Diabetes Obes Metab 12(3):224–233

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson CR, Emson PC (1980) AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods 3(2):129–149

    Article  CAS  PubMed  Google Scholar 

  • Ramagiri S, Taliyan R (2017) Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/BDNF pathway. Eur J Pharmacol 15(803):84–93

    Article  Google Scholar 

  • Rodrigues T, Borges P, Mar L, Marques D, Albano M, Eickhoff H, Carrelo C, Almeida B, Pires S, Abrantes M, Martins B (2020) GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes. Pharmacol Res Commun 1(161):105198

    Article  Google Scholar 

  • Sachdeva AK, Kuhad A, Chopra K (2014) Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol Biochem Behav 1(127):101–110

    Article  Google Scholar 

  • Sajad M, Kumar R, Thakur SC (2022) History in Perspective: The prime pathological players and role of phytochemicals in Alzheimer’s disease. IBRO Neurosci Rep 1(12):377–389

    Article  Google Scholar 

  • Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer P (2013) What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm 120:233–252

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Rodriguez D, Gonzalez-Figueroa I, Alvarez-Berríos MP (2023) Chaperone activity and protective effect against Aβ-induced cytotoxicity of artocarpus camansi blanco and amaranthus dubius mart. ex thell seed protein extracts. Pharm 16(6):820

    CAS  Google Scholar 

  • Shah P, Chavda V, Patel S, Bhadada S, Ashraf GM (2020) Promising anti-stroke signature of Voglibose: investigation through in-silico molecular docking and virtual screening in in-vivo animal studies. Curr Gene Ther 20(3):223–235

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Singh R (2012) Dichlorvos and lindane induced oxidative stress in rat brain: protective effects of ginger. Pharmacognosy Res 4(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Taliyan R (2015) Synergistic effects of GSK-3β and HDAC inhibitors in intracerebroventricular streptozotocin-induced cognitive deficits in rats. Naunyn-Schmiede Arch Pharmacol 388:337–349

    Article  CAS  Google Scholar 

  • Singh L, Singh S (2023) Neuroprotective potential of Honokiol in ICV-STZ induced neuroinflammation, Aβ (1–4 2) and NF-kB expression in experimental model of rats. Neurosci Lett 16(799):137090

    Article  Google Scholar 

  • Sottocasa GL, Kuylenstierna BO, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria: a biochemical and morphological study. J Cell Biol 32(2):415–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezel G (2022) Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 1(87):100998

    Article  Google Scholar 

  • Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 23(12):398

    Google Scholar 

  • Wang D, Gao K, Li X, Shen X, Zhang X, Ma C, Qin C, Zhang L (2012a) Long-term naringin consumption reverses a glucose uptake defect and improves cognitive deficits in a mouse model of Alzheimer’s disease. Pharmacol Biochem Behav 102(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Wang SW, Wang YJ, Su YJ, Zhou WW, Yang SG, Zhang R, Zhao M, Li YN, Zhang ZP, Zhan DW, Liu RT (2012b) Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicol 33(3):482–490

    Article  Google Scholar 

  • Wills E (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99(3):667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue P, Zz L, Gg J, Lp W, Cm B, Yl W, Chen MF, Li W (2022) The role of LRP1 in Aβ efflux transport across the blood-brain barrier and cognitive dysfunction in diabetes mellitus. Neurochem Int 1(160):105417

    Google Scholar 

  • Yamini P, Ray RS, Chopra K (2018) Vitamin D 3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer’s disease. Inflammopharmacol 26:39–55

    Article  CAS  Google Scholar 

  • Yamini P, Ray RS, Yadav S, Dhaliwal J, Yadav M, Kondepudi KK, Chopra K (2022) α7nAChR activation protects against oxidative stress, neuroinflammation and central insulin resistance in ICV-STZ induced sporadic Alzheimer’s disease. Pharmacol Biochem Behav 1(217):173402

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by University Research Fellow (URF) from Periyar University, Salem 636011, Tamil Nadu, India (PU/AD-3/ URF/ 013805/ 2019).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soundarapandian Kannan.

Ethics declarations

Conflict of interest

The authors declare that there were no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, M., Kannan, S. & Thangaraj, R. Voglibose attenuates cognitive impairment, Aβ aggregation, oxidative stress, and neuroinflammation in streptozotocin-induced Alzheimer’s disease rat model. Inflammopharmacol 31, 2751–2771 (2023). https://doi.org/10.1007/s10787-023-01313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01313-x

Keywords

Navigation