Skip to main content
Log in

Metformin Therapy Attenuates Pro-inflammatory Microglia by Inhibiting NF-κB in Cuprizone Demyelinating Mouse Model of Multiple Sclerosis

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB). In this study, we indirectly investigated whether metformin therapy would regulate microglia activity in the cuprizone (CPZ)-induced demyelination mouse model of MS via measuring the markers associated with pro- and anti-inflammatory microglia. Evaluation of myelin by luxol fast blue staining revealed that metformin treatment (CPZ + Met) diminished demyelination, in comparison to CPZ mice. In addition, metformin therapy significantly alleviated reactive microgliosis and astrogliosis in the corpus callosum, as measured by Iba-1 and GFAP staining. Moreover, metformin treatment significantly downregulated the expression of pro-inflammatory associated genes (iNOS, H2-Aa, and TNF-α) in the corpus callosum, whereas expression of anti-inflammatory markers (Arg1, Mrc1, and IL10) was not promoted, compared to CPZ mice. Furthermore, protein levels of iNOS (pro-inflammatory marker) were significantly decreased in the metformin group, while those of Trem2 (anti-inflammatory marker) were increased. In addition, metformin significantly increased AMPK activation in CPZ mice. Finally, metformin administration significantly reduced the activation level of NF-κB in CPZ mice. In summary, our data revealed that metformin attenuated pro-inflammatory microglia markers through suppressing NF-κB activity. The positive effects of metformin on microglia and remyelination suggest that it could be used as a promising candidate to lessen the incidence of inflammatory neurodegenerative diseases such as MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Data and material supporting the published claims and complying with field standards will be made available upon request.

Code Availability

In this study, we used ImageJ (ImageJ, RRID:SCR_003070) and GraphPad Prism (GraphPad Prism, RRID:SCR_002798) software. We also used anti-Iba-1 (Abcam Cat# ab178847, RRID:AB_2832244), anti-GFAP (Abcam Cat# ab7260, RRID:AB_305808), anti-iNOS (Abcam Cat# ab115819, RRID:AB_10898933), anti-Trem2 (Antibodies-Online Cat# ABIN749678, RRID:AB_11182784), anti-NFkB p65 (Abcam Cat# ab16502, RRID:AB_443394), anti-p-NFκB p65 (Santa Cruz Biotechnology Cat# sc-136548, RRID:AB_10610391), anti-p-AMPK (Santa Cruz Biotechnology Cat# sc-33524, RRID:AB_2169714), and anti-AMPK (Santa Cruz Biotechnology Cat# sc-74461, RRID:AB_1118940).

References

  • Adilijiang A, Guan T, He J, Hartle K, Wang W, Li X (2015) The protective effects of areca catechu extract on cognition and social interaction deficits in a cuprizone-induced demyelination model. Evidence-based complementary and alternative medicine 2015

  • Algire C, Moiseeva O, Deschênes-Simard X, Amrein L, Petruccelli L, Birman E, Viollet B, Ferbeyre G, Pollak MN (2012) Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res 5(4):536–543

    CAS  Google Scholar 

  • Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG (2005) Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. J Neuroeng Rehabil 2(1):1–13

    Google Scholar 

  • Arnoux I, Willam M, Griesche N, Krummeich J, Watari H, Offermann N, Weber S, Dey PN, Chen C, Monteiro O (2018) Metformin reverses early cortical network dysfunction and behavior changes in Huntington’s disease. Elife 7:e38744

  • Aryanpour R, Pasbakhsh P, Zibara K, Namjoo Z, Boroujeni FB, Shahbeigi S, Kashani IR, Beyer C, Zendehdel A (2017a) Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int Immunopharmacol 51:131–139. https://doi.org/10.1016/j.intimp.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  • Aryanpour R, Pasbakhsh P, Zibara K, Namjoo Z, Boroujeni FB, Shahbeigi S, Kashani IR, Beyer C, Zendehdel A (2017b) Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int Immunopharmacol 51:131–139

    CAS  PubMed  Google Scholar 

  • Aryanpour R, Zibara K, Pasbakhsh P, Jame’ei SB, Namjoo Z, Ghanbari A, Mahmoudi R, Amani S, Kashani IR (2021) 17Beta-estradiol reduces demyelination in cuprizone-fed mice by promoting M2 microglia polarity and regulating NLRP3 inflammasome. Neuroscience 463:116–127. https://doi.org/10.1016/j.neuroscience.2021.03.025

    Article  CAS  PubMed  Google Scholar 

  • Barati S, Ragerdi Kashani I, Moradi F, Tahmasebi F, Mehrabi S, Barati M, Joghataei MT (2019) Mesenchymal stem cell mediated effects on microglial phenotype in cuprizone-induced demyelination model. J Cell Biochem 120(8):13952–13964

    CAS  PubMed  Google Scholar 

  • Bernardes D, Oliveira ALR (2017) Comprehensive catwalk gait analysis in a chronic model of multiple sclerosis subjected to treadmill exercise training. BMC Neurol 17(1):160. https://doi.org/10.1186/s12883-017-0941-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonetti B, Stegagno C, Moretto G, Rizzuto N, Cannella B, Raine C (1998) Localization of NFkB in multiple sclerosis lesions: implications for oligodendrocyte damage. J Neuroimmunol 90(1):71

    Google Scholar 

  • Brousse B, Mercier O, Magalon K, Daian F, Durbec P, Cayre M (2021) Endogenous neural stem cells modulate microglia and protect against demyelination. Stem Cell Rep

  • Brück W, Pförtner R, Pham T, Zhang J, Hayardeny L, Piryatinsky V, Hanisch UK, Regen T, van Rossum D, Brakelmann L, Hagemeier K, Kuhlmann T, Stadelmann C, John GR, Kramann N, Wegner C (2012) Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol 124(3):411–424. https://doi.org/10.1007/s00401-012-1009-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Hussain MD, Yan L-J (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 124(5):307–321

    CAS  PubMed  Google Scholar 

  • Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, Yuede CM, Galimberti D, Olivecrona G, Klein RS (2015) TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol 129(3):429–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11(1):98

    PubMed  PubMed Central  Google Scholar 

  • Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, Cui L (2018) The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 318:1–7

    CAS  PubMed  Google Scholar 

  • Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, Manis M, Ibrahim A, Deng L, Benitez BA (2020) TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol 1–22

  • Citraro R, Leo A, Constanti A, Russo E, De Sarro G (2016) mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 107:333–343

    CAS  PubMed  Google Scholar 

  • Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558

    CAS  Google Scholar 

  • Devanney NA, Stewart AN, Gensel JC (2020) Microglia and macrophage metabolism in CNS injury and disease: the role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 113310

  • Elbaz EM, Senousy MA, El-Tanbouly DM, Sayed RH (2018a) Neuroprotective effect of linagliptin against cuprizone-induced demyelination and behavioural dysfunction in mice: a pivotal role of AMPK/SIRT1 and JAK2/STAT3/NF-kappaB signalling pathway modulation. Toxicol Appl Pharmacol 352:153–161. https://doi.org/10.1016/j.taap.2018.05.035

    Article  CAS  PubMed  Google Scholar 

  • Elbaz EM, Senousy MA, El-Tanbouly DM, Sayed RH (2018b) Neuroprotective effect of linagliptin against cuprizone-induced demyelination and behavioural dysfunction in mice: a pivotal role of AMPK/SIRT1 and JAK2/STAT3/NF-κB signalling pathway modulation. Toxicol Appl Pharmacol 352:153–161

    CAS  PubMed  Google Scholar 

  • Goldberg J, Clarner T, Beyer C, Kipp M (2015) Anatomical distribution of cuprizone-induced lesions in C57BL6 mice. J Mol Neurosci 57(2):166–175

    CAS  PubMed  Google Scholar 

  • Groebe A, Clarner T, Baumgartner W, Dang J, Beyer C, Kipp M (2009) Cuprizone treatment induces distinct demyelination, astrocytosis, and microglia cell invasion or proliferation in the mouse cerebellum. Cerebellum 8(3):163–174. https://doi.org/10.1007/s12311-009-0099-3

    Article  CAS  PubMed  Google Scholar 

  • Gudi V, Gingele S, Skripuletz T, Stangel M (2014) Glial response during cuprizone-induced de-and remyelination in the CNS: lessons learned. Front Cell Neurosci 8:73

    PubMed  PubMed Central  Google Scholar 

  • Guerrero BL, Sicotte NL (2020) Microglia in multiple sclerosis: friend or foe? Front Immunol 11

  • Gveric D, Kaltschmidt C, Cuzner ML, Newcombe J (1998) Transcription factor NF-kappaB and inhibitor I kappaBalpha are localized in macrophages in active multiple sclerosis lesions. J Neuropathol Exp Neurol 57(2):168–178. https://doi.org/10.1097/00005072-199802000-00008

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Suzuki K, Hattori S, Kasai K (2006) Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47(6):1183–1188

    CAS  PubMed  Google Scholar 

  • Houshmand F, Barati M, Golab F, Ramezani-Sefidar S, Tanbakooie S, Tabatabaei M, Amiri M, Sanadgol N (2019a) Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. DARU Journal of Pharmaceutical Sciences 27(2):583–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houshmand F, Barati M, Golab F, Ramezani-Sefidar S, Tanbakooie S, Tabatabaei M, Amiri M, Sanadgol N (2019b) Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. Daru 27(2):583–592. https://doi.org/10.1007/s40199-019-00286-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang IK, Kim IY, Joo EJ, Shin JH, Choi JW, Won M-H, Yoon YS, Seong JK (2010) Metformin normalizes type 2 diabetes-induced decrease in cell proliferation and neuroblast differentiation in the rat dentate gyrus. Neurochem Res 35(4):645–650

    CAS  PubMed  Google Scholar 

  • Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, Mathys H, Seo J, Kritskiy O, Abdurrob F (2016) Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540(7632):230–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon S-M (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48(7):e245–e245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha MK, Lee W-H, Suk K (2016) Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders. Biochem Pharmacol 103:1–16

    CAS  PubMed  Google Scholar 

  • Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, Zhou X, Qin Z, Jia J, Zhen X (2014) Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 40:131–142

    CAS  PubMed  Google Scholar 

  • Jing Y, Wu F, Li D, Yang L, Li Q, Li R (2018) Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 461:256–264. https://doi.org/10.1016/j.mce.2017.09.025

    Article  CAS  PubMed  Google Scholar 

  • Kheirandish M, Mahboobi H, Yazdanparast M, Kamal W, Kamal MA (2018) Anti-cancer effects of metformin: recent evidences for its role in prevention and treatment of cancer. Curr Drug Metab 19(9):793–797. https://doi.org/10.2174/1389200219666180416161846

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Yang G, Kim Y, Kim J, Ha J (2016) AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 48(4):e224–e224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Hahn KR, Jung HY, Kwon HJ, Nam SM, Kim JW, Park JH, Yoo DY, Kim DW, Won MH (2019) Melatonin ameliorates cuprizone‐induced reduction of hippocampal neurogenesis, brain‐derived neurotrophic factor, and phosphorylation of cyclic AMP response element‐binding protein in the mouse dentate gyrus. Brain Behav 9(9):e01388

  • Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736

    PubMed  Google Scholar 

  • Kiriyama Y, Nochi H (2015) The function of autophagy in neurodegenerative diseases. Int J Mol Sci 16(11):26797–26812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaraju J, Seegobin M, Gouveia A, Syal C, Sarma SN, Lu KJ, Ilin J, He L, Wondisford FE, Lagace D (2020) Metformin promotes CNS remyelination and improves social interaction following focal demyelination through CBP Ser436 phosphorylation. Exp Neurol 334:113454

  • Largani SHH, Borhani-Haghighi M, Pasbakhsh P, Mahabadi VP, Nekoonam S, Shiri E, Kashani IR, Zendehdel A (2019) Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. J Mol Histol 50(3):263–271. https://doi.org/10.1007/s10735-019-09824-0

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harbor perspectives in medicine 8(3):a028936

  • Lassmann H, Van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–656

    CAS  PubMed  Google Scholar 

  • Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, Steinkampf MP, Coutifaris C, McGovern PG, Cataldo NA (2007) Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med 356(6):551–566

    CAS  PubMed  Google Scholar 

  • Li J, Deng J, Sheng W, Zuo Z (2012) Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 101(4):564–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G (2016) Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int J Neuropsychopharmacol 19(9):pyw047

  • Luo C, Jian C, Liao Y, Huang Q, Wu Y, Liu X, Zou D, Wu Y (2017) The role of microglia in multiple sclerosis. Neuropsychiatr Dis Treat 13:1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manwani B, McCullough LD (2013) Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. J Neurosci Res 91(8):1018–1029. https://doi.org/10.1002/jnr.23207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mc Guire C, Prinz M, Beyaert R, van Loo G (2013) Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends Mol Med 19(10):604–613

    CAS  PubMed  Google Scholar 

  • Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA (2010) Metformin prevents tobacco carcinogen–induced lung tumorigenesis. Cancer Prev Res 3(9):1066–1076

    CAS  Google Scholar 

  • Nakagawa Y, Chiba K (2015) Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther 154:21–35

    CAS  PubMed  Google Scholar 

  • Nakatake R, Iida H, Ishizaki M, Matsui K, Nakamura Y, Kaibori M, Nishizawa M, Okumura T (2018) Metformin inhibits expression of the proinflammatory biomarker inducible nitric oxide synthase in hepatocytes. Functional Foods in Health and Disease 8(3):175–192

    CAS  Google Scholar 

  • Nath N, Khan M, Paintlia MK, Hoda MN, Giri S (2009a) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182(12):8005–8014

    CAS  PubMed  Google Scholar 

  • Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S (2009b) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol (Baltimore, Md : 1950) 182(12):8005–8014. https://doi.org/10.4049/jimmunol.0803563

  • Nath N, Khan M, Rattan R, Mangalam A, Makkar RS, de Meester C, Bertrand L, Singh I, Chen Y, Viollet B, Giri S (2009c) Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochem Biophys Res Commun 386(1):16–20. https://doi.org/10.1016/j.bbrc.2009.05.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrotto L, Farez MF, Correale J (2016) Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol 73(5):520–528

    PubMed  Google Scholar 

  • Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184(1–2):92–99

    CAS  PubMed  Google Scholar 

  • Nyamoya S, Leopold P, Becker B, Beyer C, Hustadt F, Schmitz C, Michel A, Kipp M (2019) G-protein-coupled receptor Gpr17 expression in two multiple sclerosis remyelination models. Mol Neurobiol 56(2):1109–1123

    CAS  PubMed  Google Scholar 

  • Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665

    CAS  PubMed  Google Scholar 

  • Paintlia AS, Paintlia MK, Mohan S, Singh AK, Singh I (2013) AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. Am J Pathol 183(2):526–541. https://doi.org/10.1016/j.ajpath.2013.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto CA, de Oliveira WH, da Racho Araújo SM, Nunes AKS (2017) AMPK activation: role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol 298:31–41

    CAS  PubMed  Google Scholar 

  • Pott F, Gingele S, Clarner T, Dang J, Baumgartner W, Beyer C, Kipp M (2009) Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia. Brain Res 1305:137–149

    CAS  PubMed  Google Scholar 

  • Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505. https://doi.org/10.1016/j.neubiorev.2014.10.004

    Article  CAS  Google Scholar 

  • Qing L, Fu J, Wu P, Zhou Z, Yu F, Tang J (2019) Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. American Journal of Translational Research 11(2):655–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11(11):775–787

    CAS  PubMed  Google Scholar 

  • Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med 89(7):667–676

    CAS  PubMed  Google Scholar 

  • Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Golab F (2020) Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 72(3):641–658

    CAS  PubMed  Google Scholar 

  • Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M, Golab F (2019) Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 72(3):641–658. https://doi.org/10.1007/s43440-019-00019-8

    Article  CAS  PubMed  Google Scholar 

  • Sanadgol N, Golab F, Mostafaie A, Mehdizadeh M, Khalseh R, Mahmoudi M, Abdollahi M, Vakilzadeh G, Taghizadeh G, Sharifzadeh M (2018) Low, but not high, dose triptolide controls neuroinflammation and improves behavioral deficits in toxic model of multiple sclerosis by dampening of NF-κB activation and acceleration of intrinsic myelin repair. Toxicol Appl Pharmacol 342:86–98

    CAS  PubMed  Google Scholar 

  • Sanchez-Guajardo V, Tentillier N, Romero-Ramos M (2015) The relation between α-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience 302:47–58

    CAS  PubMed  Google Scholar 

  • Srinivasan M, Lahiri DK (2015) Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin Ther Targets 19(4):471–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Huang N, Ma W, Zhou H, Lai K (2019) Protective effects of metformin on lipopolysaccharide-induced airway epithelial cell injury via NF-κB signaling inhibition. Mol Med Rep 19(3):1817–1823

    CAS  PubMed  Google Scholar 

  • Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, Li B, Quan M, Guo L (2016) Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 292:58–67. https://doi.org/10.1016/j.jneuroim.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194

    CAS  PubMed  Google Scholar 

  • Tayara K, Espinosa-Oliva AM, García-Domínguez I, Ismaiel AA, Boza-Serrano A, Deierborg T, Machado A, Herrera AJ, Venero JL, de Pablos RM (2018) Divergent effects of metformin on an inflammatory model of Parkinson’s disease. Front Cell Neurosci 12:440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torkildsen Ø, Brunborg L, Myhr KM, Bø L (2008) The cuprizone model for demyelination. Acta Neurol Scand 117:72–76

    Google Scholar 

  • Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O (2019) Five decades of cuprizone, an updated model to replicate demyelinating diseases. Curr Neuropharmacol 17(2):129–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217

    CAS  PubMed  Google Scholar 

  • Willenborg DO, Staykova M, Fordham S, O’Brien N, Linares D (2007) The contribution of nitric oxide and interferon gamma to the regulation of the neuro-inflammation in experimental autoimmune encephalomyelitis. J Neuroimmunol 191(1–2):16–25

    CAS  PubMed  Google Scholar 

  • Xu T, Wu X, Lu X, Liang Y, Mao Y, Loor JJ, Yang Z (2021) Metformin activated AMPK signaling contributes to the alleviation of LPS-induced inflammatory responses in bovine mammary epithelial cells. BMC Vet Res 17(1):97. https://doi.org/10.1186/s12917-021-02797-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhu B, Zheng F, Li Y, Zhang Y, Hu Y, Wang X (2017) Chronic metformin treatment facilitates seizure termination. Biochem Biophys Res Commun 484(2):450–455

    CAS  PubMed  Google Scholar 

  • Ye J, Zhu N, Sun R, Liao W, Fan S, Shi F, Lin H, Jiang S, Ying Y (2018) Metformin inhibits chemokine expression through the AMPK/NF-κB signaling pathway. J Interferon Cytokine Res 38(9):363–369

    CAS  PubMed  Google Scholar 

  • Yoo DY, Kim W, Nam SM, Yoo K-Y, Lee CH, Choi JH, Won M-H, Hwang IK, Yoon YS (2011) Reduced cell proliferation and neuroblast differentiation in the dentate gyrus of high fat diet-fed mice are ameliorated by metformin and glimepiride treatment. Neurochem Res 36(12):2401–2408

    CAS  PubMed  Google Scholar 

  • Yuan R, Wang Y, Li Q, Zhen F, Li X, Lai Q, Hu P, Wang X, Zhu Y, Fan H (2019) Metformin reduces neuronal damage and promotes neuroblast proliferation and differentiation in a cerebral ischemia/reperfusion rat model. NeuroReport 30(3):232–240

    CAS  PubMed  Google Scholar 

  • Zhang D, Xuan J, Zheng B-B, Zhou Y-L, Lin Y, Wu Y-S, Zhou Y-F, Huang Y-X, Wang Q, Shen L-Y (2017) Metformin improves functional recovery after spinal cord injury via autophagy flux stimulation. Mol Neurobiol 54(5):3327–3341

    CAS  PubMed  Google Scholar 

  • Zhang L, Lu X, Gong L, Cui L, Zhang H, Zhao W, Jiang P, Hou G, Hou Y (2020) Tetramethylpyrazine protects blood-spinal cord barrier integrity by modulating microglia polarization through activation of STAT3/SOCS3 and inhibition of NF-kB signaling pathways in experimental autoimmune encephalomyelitis mice. CELLULAR AND MOLECULAR NEUROBIOLOGY

  • Zhang Y, Feng S, Nie K, Li Y, Gao Y, Gan R, Wang L, Li B, Sun X, Wang L (2018) TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem Biophys Res Commun 499(4):797–802

    CAS  PubMed  Google Scholar 

  • Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of ‘homeostatic’microglia and patterns of their activation in active multiple sclerosis. Brain 140(7):1900–1913

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The current study was supported by a grant (number 98–01‐30‐41867) to Parichehr Pasbakhsh from the Tehran University of Medical Sciences and Health Services, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MA, MS, SN, AS, FF, and MA performed experiments. MA, PP, WM, KZ, IRK, and AZ analyzed experiments. MA and KZ wrote the manuscript. PP and AZ designed the study with help of KZ and IRJ. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Parichehr Pasbakhsh or Kazem Zibara.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors. However, research and animal care were approved by the Institutional Animal Care and Use Committee (IACUC) and Ethics Committees of Tehran University of Medical Science (TUMS), Tehran, Iran (IR.TUMS.MEDICINE.REC.1398.224). Animals were kept in quarantine for approx. 1 week prior to use. All applicable international, national, and institutional guidelines for the care and use of animals were followed. All animals were kept in standard conditions with unlimited access to food and water. Surgical procedures were performed under deep anesthesia. Housing of animals and experimental procedures were carried out in accordance with the guidelines of the Iranian Agriculture Ministry and of the European Communities Council Directive (86/609/EEC).

Consent to Participate

Not applicable, as no human material was used.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, M., Pasbakhsh, P., Shabani, M. et al. Metformin Therapy Attenuates Pro-inflammatory Microglia by Inhibiting NF-κB in Cuprizone Demyelinating Mouse Model of Multiple Sclerosis. Neurotox Res 39, 1732–1746 (2021). https://doi.org/10.1007/s12640-021-00417-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00417-y

Keywords

Navigation