Skip to main content

Advertisement

Log in

Cuprizone Treatment Induces Distinct Demyelination, Astrocytosis, and Microglia Cell Invasion or Proliferation in the Mouse Cerebellum

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Demyelination of the cerebellum is a well-known phenomenon in human multiple sclerosis (MS). Concordantly, patients with MS frequently developed symptoms deriving from cerebellar lesions, i.e., dysmetria leading to hand dexterity impairment. Important advances in MS research have been made as a direct or indirect consequence of the establishment of adequate animal models. In this study, we used the cuprizone mouse model to investigate cerebellar demyelination in young adult male mice. The myelin status was analyzed by immunohistochemistry for proteolipoprotein and electron microscopy. The expression and presence of oligodendrocyte, astroglial, and microglia markers were supplementary studied. Cuprizone intoxication induced an almost complete demyelination of cerebellar nuclei. Cerebellar cortex regions were not (cortical gray matter) or only marginally (cortical white matter) affected. In addition, the affected areas displayed hypertrophic and hyperplastic astrocytosis accompanied by microglia or macrophage invasion. We conclude that cuprizone-induced demyelination pictures cerebellar deep gray matter involvement but not cerebellar cortex pathology as described for human MS. Behavioral changes after cuprizone described for this animal model may not only result from effects on commissural fiber tracts but also can arise from cerebellar demyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

APC:

adenomatous polyposis coli protein

CCx:

cerebellar cortex

CM:

cerebellar marrow

CNS:

central nervous system

cuprizone:

bis-cyclohexanone oxaldihydrazone

EAE:

experimental autoimmune encephalomyelitis

GFAP:

glial fibrillary acidic protein

GL:

granular layer

HPRT:

hypoxanthine-guanine phosphoribosyltransferase

Iba-1:

ionized calcium binding adaptor molecule

IHC:

immunohistochemistry

IN:

interpositus nucleus

LCN:

lateral cerebellar nucleus

MBP:

myelin basic protein

MCN:

medial cerebellar nucleus

ML:

molecular layer

MRI:

magnet resonance imaging

MS:

multiple sclerosis

PL:

pyramidal layer

PLP:

proteolipoprotein

rt:

reverse transcription

RT:

real time

WM:

white matter

References

  1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343(13):938–992

    Article  PubMed  CAS  Google Scholar 

  2. Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain 122(Pt 1):17–26

    Article  PubMed  Google Scholar 

  3. Kutzelnigg A, Lassmann H (2006) Cortical demyelination in multiple sclerosis: a substrate for cognitive deficits? J Neurol Sci 245(1–2):123–126

    Article  PubMed  Google Scholar 

  4. Pokryszko-Dragan A, Gruszka E, Bilinska M, Dubik-Jezierzanska M (2008) Secondary progressive multiple sclerosis - clinical course and potential predictive factors. Neurol Neurochir Pol 42(1):6–11

    PubMed  Google Scholar 

  5. Kutzelnigg A, Faber-Rod JC, Bauer J, Lucchinetti CF, Sorensen PS, Laursen H et al (2007) Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol 17(1):38–44

    Article  PubMed  Google Scholar 

  6. Gilmore CP, Donaldson I, Bo L, Owens T, Lowe JS, Evangelou N (2009) Regional variations in the extent and pattern of grey matter demyelination in Multiple Sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry 80(2):182–187

    Article  PubMed  CAS  Google Scholar 

  7. Craner MJ, Lo AC, Black JA, Baker D, Newcombe J, Cuzner ML et al (2003) Annexin II/p11 is up-regulated in Purkinje cells in EAE and MS. Neuroreport 14(4):555–558

    Article  PubMed  Google Scholar 

  8. Tonra JR (2002) Cerebellar susceptibility to experimental autoimmune encephalomyelitis in SJL/J mice: potential interaction of immunology with vascular anatomy. Cerebellum 1(1):57–68

    Article  PubMed  Google Scholar 

  9. Yousry TA, Grossman RI, Filippi M (2000) Assessment of posterior fossa damage in MS using MRI. J Neurol Sci 172(Suppl 1):S50–S53

    Article  PubMed  Google Scholar 

  10. Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, Berente Z, Komoly S, Beyer C (2008) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia, in press

  11. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855

    Article  PubMed  CAS  Google Scholar 

  12. Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7(3):115–121

    Article  PubMed  CAS  Google Scholar 

  13. Franco-Pons N, Torrente M, Colomina MT, Vilella E (2007) Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett 169(3):205–213

    Article  PubMed  CAS  Google Scholar 

  14. Liebetanz D, Merkler D (2006) Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol 202(1):217–224

    Article  PubMed  CAS  Google Scholar 

  15. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116

    Article  PubMed  CAS  Google Scholar 

  16. Stott SR, Kirik D (2006) Targeted in utero delivery of a retroviral vector for gene transfer in the rodent brain. Eur J Neurosci 24(7):1897–1906

    Article  PubMed  Google Scholar 

  17. Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P et al (2005) Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 25(30):6947–6957

    Article  PubMed  CAS  Google Scholar 

  18. Tekkok SB, Goldberg MP (2001) Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 21(12):4237–4248

    PubMed  CAS  Google Scholar 

  19. Cheung KK, Mok SC, Rezaie P, Chan WY (2008) Dynamic expression of Dab2 in the mouse embryonic central nervous system. BMC Dev Biol 8(1):76

    Article  PubMed  CAS  Google Scholar 

  20. Wells JE, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D (2005) Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 21(1):187–196

    Article  PubMed  Google Scholar 

  21. Kipp M, Norkute A, Johann S, Lorenz L, Braun A, Hieble A et al (2008) Brain-region-specific astroglial responses in vitro after LPS exposure. J Mol Neurosci 35(2):235–243

    Article  PubMed  CAS  Google Scholar 

  22. Kipp M, Karakaya S, Johann S, Kampmann E, Mey J, Beyer C (2007) Oestrogen and progesterone reduce lipopolysaccharide-induced expression of tumour necrosis factor-alpha and interleukin-18 in midbrain astrocytes. J Neuroendocrinol 19(10):819–822

    Article  PubMed  CAS  Google Scholar 

  23. Alusi SH, Worthington J, Glickman S, Bain PG (2001) A study of tremor in multiple sclerosis. Brain 124(Pt 4):720–730

    Article  PubMed  CAS  Google Scholar 

  24. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78(3-5):272–303

    Article  PubMed  Google Scholar 

  25. Schwarz C, Thier P (1999) Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci 22(10):443–451

    Article  PubMed  CAS  Google Scholar 

  26. Mitosek-Szewczyk K, Sulkowski G, Stelmasiak Z, Struzynska L (2008) Expression of glutamate transporters GLT-1 and GLAST in different regions of rat brain during the course of experimental autoimmune encephalomyelitis. Neuroscience 155(1):45–52

    Article  PubMed  CAS  Google Scholar 

  27. Kis B, Rumberg B, Berlit P (2008) Clinical characteristics of patients with late-onset multiple sclerosis. J Neurol 255(5):697–702

    Article  PubMed  Google Scholar 

  28. Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48(1):9–12

    Article  PubMed  CAS  Google Scholar 

  29. Torkildsen O, Brunborg LA, Myhr KM, Bo L (2008) The cuprizone model for demyelination. Acta Neurol Scand Suppl 188:72–76

    Article  PubMed  CAS  Google Scholar 

  30. Skripuletz T, Lindner M, Kotsiari A, Garde N, Fokuhl J, Linsmeier F et al (2008) Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 172(4):1053–1061

    Article  PubMed  Google Scholar 

  31. Norkute A, Hieble A, Braun A, Johann S, Clarner T, Baumgartner W, Beyer C, Kipp M (2008) Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res 19

  32. Kleim JA, Pipitone MA, Czerlanis C, Greenough WT (1998) Structural stability within the lateral cerebellar nucleus of the rat following complex motor learning. Neurobiol Learn Mem 69(3):290–306

    Article  PubMed  CAS  Google Scholar 

  33. Alvina K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K (2008) Questioning the role of rebound firing in the cerebellum. Nat Neurosci 11(11):1256–1258

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez-Campusano R, Gruart A, Delgado-Garcia JM (2007) The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci 27(25):6620–6632

    Article  PubMed  CAS  Google Scholar 

  35. Pu YM, Wang JJ, Wang T, Yu QX (1995) Cerebellar interpositus nucleus modulates neuronal activity of lateral hypothalamic area. Neuroreport 6(7):985–988

    Article  PubMed  CAS  Google Scholar 

  36. Aschoff JC, Conrad B, Kornhuber HH (1974) Acquired pendular nystagmus with oscillopsia in multiple sclerosis: a sign of cerebellar nuclei disease. J Neurol Neurosurg Psychiatry 37(5):570–577

    Article  PubMed  CAS  Google Scholar 

  37. Tjoa CW, Benedict RH, Weinstock-Guttman B, Fabiano AJ, Bakshi R (2005) MRI T2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis. J Neurol Sci 234(1–2):17–24

    Article  PubMed  CAS  Google Scholar 

  38. Li Y, Chiaravalloti ND, Hillary FG, Deluca J, Liu WC, Kalnin AJ et al (2004) Differential cerebellar activation on functional magnetic resonance imaging during working memory performance in persons with multiple sclerosis. Arch Phys Med Rehabil 85(4):635–639

    Article  PubMed  Google Scholar 

  39. Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212

    Article  PubMed  CAS  Google Scholar 

  40. Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD (2004) Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev 17(1):174–207

    Article  PubMed  CAS  Google Scholar 

  41. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  PubMed  CAS  Google Scholar 

  42. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55(4):458–468

    Article  PubMed  Google Scholar 

  43. Ludwin SK, Johnson ES (1981) Evidence for a “dying-back” gliopathy in demyelinating disease. Ann Neurol 9(3):301–305

    Article  PubMed  CAS  Google Scholar 

  44. Komoly S (2005) Experimental demyelination caused by primary oligodendrocyte dystrophy. Regional distribution of the lesions in the nervous system of mice [corrected]. Ideggyogy Sz 58(1–2):40–43

    PubMed  Google Scholar 

  45. Karakaya S, Kipp M, Beyer C (2007) Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J Neuroendocrinol 19(9):682–690

    Article  PubMed  CAS  Google Scholar 

  46. Pawlak J, Brito V, Kuppers E, Beyer C (2005) Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res 138(1):1–7

    Article  PubMed  CAS  Google Scholar 

  47. Lassmann H (2008) Models of multiple sclerosis: new insights into pathophysiology and repair. Curr Opin Neurol 21(3):242–247

    Article  PubMed  CAS  Google Scholar 

  48. Keegan M, Konig F, McClelland R, Bruck W, Morales Y, Bitsch A et al (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366(9485):579–582

    Article  PubMed  Google Scholar 

  49. Williams A, Piaton G, Lubetzki C (2007) Astrocytes–friends or foes in multiple sclerosis. Glia 55(13):1300–1312

    Article  PubMed  Google Scholar 

  50. Johann S, Kampmann E, Denecke B, Arnold S, Kipp M, Mey J et al (2008) Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. J Mol Neurosci 34(2):177–185

    Article  PubMed  CAS  Google Scholar 

  51. Komoly S, Hudson LD, Webster HD, Bondy CA (1992) Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc Natl Acad Sci USA 89(5):1894–1898

    Article  PubMed  CAS  Google Scholar 

  52. Mason JL, Ye P, Suzuki K, D’Ercole AJ, Matsushima GK (2000) Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. J Neurosci 20(15):5703–5708

    PubMed  CAS  Google Scholar 

  53. McMahon EJ, Suzuki K, Matsushima GK (2002) Peripheral macrophage recruitment in cuprizone-induced CNS demyelination despite an intact blood-brain barrier. J Neuroimmunol 130(1–2):32–45

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank U. Zahn, A. Weth and H. Helten for excellence technical assistance. This research project was supported by the START-Program (MK) of the Faculty of Medicine, RWTH Aachen University and seed funds of the RWTH Aachen University (WB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kipp.

Additional information

Angela Groebe and Tim Clarner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groebe, A., Clarner, T., Baumgartner, W. et al. Cuprizone Treatment Induces Distinct Demyelination, Astrocytosis, and Microglia Cell Invasion or Proliferation in the Mouse Cerebellum. Cerebellum 8, 163–174 (2009). https://doi.org/10.1007/s12311-009-0099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0099-3

Keywords

Navigation