Skip to main content

Advertisement

Log in

Are Polyphenols Strong Dietary Agents Against Neurotoxicity and Neurodegeneration?

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Life expectancy of most human populations has greatly increased as a result of factors including better hygiene, medical practice, and nutrition. Unfortunately, as humans age, they become more prone to suffer from neurodegenerative diseases and neurotoxicity. Polyphenols can be cheaply and easily obtained as part of a healthy diet. They present a wide range of biological activities, many of which have relevance for human health. Compelling evidence has shown that dietary phytochemicals, particularly polyphenols, have properties that may suppress neuroinflammation and prevent toxic and degenerative effects in the brain. The mechanisms by which polyphenols exert their action are not fully understood, but it is clear that they have a direct effect through their antioxidant activities. They have also been shown to modulate intracellular signaling cascades, including the PI3K–Akt, MAPK, Nrf2, and MEK pathways. Polyphenols also interact with a range of neurotransmitters, illustrating that these compounds can promote their health benefits in the brain through a direct, indirect, or complex action. We discuss whether polyphenols obtained from diet or food supplements are an effective strategy to prevent or treat neurodegeneration. We also discuss the safety, mechanisms of action, and the current and future relevance of polyphenols in clinical treatment of neurodegenerative diseases. As populations age, it is important to discuss the dietary strategies to avoid or counteract the effects of incurable neurodegenerative disorders, which already represent an enormous financial and emotional burden for health care systems, patients, and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham J, Johnson RW (2009) Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res 12:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aluise CD, Robinson RA, Beckett TL, Murphy MP, Cai J, Pierce WM, Markesbery WR, Butterfield DA (2010) Preclinical Alzheimer disease: brain oxidative stress Abeta peptide and proteomics. Neurobiol Dis 39:221–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amara F, Berbenni M, Fragni M, Leoni G, Viggiani S, Ippolito VM, Larocca M, Rossano R, Alberghina L, Riccio P, Colangelo AM (2015) Neuroprotection by cocktails of dietary antioxidants under conditions of nerve growth factor deprivation. Oxidative Med Cell Longev 2015:217258

    Article  Google Scholar 

  • Ames BN, Gold LS (1991) Endogenous mutagens and the causes of aging and cancer. Mutat Res 250:3–16

    Article  CAS  PubMed  Google Scholar 

  • Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N (2007) SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 14:827–845

    Article  CAS  PubMed  Google Scholar 

  • Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM (2001) Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J Nutr 131:2837–2842

    CAS  PubMed  Google Scholar 

  • Apostolou A, Stagos D, Galitsiou E, Spyrou A, Haroutounian S, Portesis N, Trizoglou I, Wallace Hayes A, Tsatsakis AM, Kouretas D (2013) Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food Chem Toxicol 61:60–68

    Article  CAS  PubMed  Google Scholar 

  • Aseervatham GS, Sivasudha T, Jeyadevi R, Arul Ananth D (2013) Environmental factors and unhealthy lifestyle influence oxidative stress in humans–an overview. Environ Sci Pollut Res Int 20:4356–4369

    Article  PubMed  Google Scholar 

  • Ashafaq M, Raza SS, Khan MM, Ahmad A, Javed H, Ahmad ME, Tabassum R, Islam F, Siddiqui MS, Safhi MM, Islam F (2012) Catechin hydrate ameliorates redox imbalance and limits inflammatory response in focal cerebral ischemia. Neurochem Res 37:1747–1760

    Article  CAS  PubMed  Google Scholar 

  • Assuncao M, Andrade JP (2015) Protective action of green tea catechins in neuronal mitochondria during aging. Front Biosci (Landmark Edition) 20:247–262

    Article  Google Scholar 

  • Atoui AK, Mansouri A, Boskou G, Kefalas P (2005) Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem 89:27–36

    Article  CAS  Google Scholar 

  • Ayissi VB, Ebrahimi A, Schluesenner H (2014) Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol Nutr Food Res 58:22–32

    Article  CAS  PubMed  Google Scholar 

  • Baptista FI, Henriques AG, Silva AM, Wiltfang J, da Cruz e Silva OA (2014) Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem Neurosci 5:83–92

    Article  CAS  PubMed  Google Scholar 

  • Bastianetto S, Yao ZX, Papadopoulos V, Quirion R (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 23:55–64

    Article  PubMed  Google Scholar 

  • Basu A, Sanchez K, Leyva MJ, Wu M, Betts NM, Aston CE, Lyons TJ (2010) Green tea supplementation affects body weight Lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr 29:31–40

    Article  CAS  PubMed  Google Scholar 

  • Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    Article  CAS  PubMed  Google Scholar 

  • Bilsland LG, Nirmalananthan N, Yip J, Greensmith L, Duchen MR (2008) Expression of mutant SOD1 in astrocytes induces functional deficits in motor neuron mitochondria. J Neurochem 107:1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Muller MJ, Oberritter H, Schulze M, Stehle P, Watzl B (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51:637–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn SK, Ward NC, Hodgson JM, Croft KD (2012) Effects of tea and coffee on cardiovascular disease risk. Food Funct 3:575–591

    Article  CAS  PubMed  Google Scholar 

  • Bolca S, Van de Wiele T, Possemiers S (2013) Gut metabotypes govern health effects of dietary polyphenols. Curr Opin Biotechnol 24:220–225

    Article  CAS  PubMed  Google Scholar 

  • Boots AW, Li H, Schins RP, Duffin R, Heemskerk JW, Bast A, Haenen GR (2007) The quercetin paradox. Toxicol Appl Pharmacol 222:89–96

    Article  CAS  PubMed  Google Scholar 

  • Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  PubMed  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343

    Article  CAS  PubMed  Google Scholar 

  • Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan-Neagoe I (2013) The relationship between the structure and biological actions of green tea catechins. Food Chem 141:3282–3289

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Barone E, Calafato S, Bates T, Rizzarelli E, Kostova AT (2009) Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front Biosci 14:376–397

    Article  CAS  Google Scholar 

  • Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA (2000) Neurobehavioral aspects of antioxidants in aging. Int J Dev Neurosci 18:367–381

    Article  CAS  PubMed  Google Scholar 

  • Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, Marambaud P (2012) Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 120:461–472

    Article  CAS  PubMed  Google Scholar 

  • Casley CS, Land JM, Sharpe MA, Clark JB, Duchen MR, Canevari L (2002) Beta-amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol Dis 10:258–267

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Rimando A, Pallas M, Camins A, Porquet D, Reeves J, Shukitt-Hale B, Smith MA, Joseph JA, Casadesus G (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Ageing 33:2062–2071

    Article  CAS  Google Scholar 

  • Chen S (2011) Natural products triggering biological targets–a review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis. Curr Drug Targets 12:288–301

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Zhang L (2003) The antioxidant (−)-epigallocatechin-3-gallate inhibits rat hepatic stellate cell proliferation in vitro by blocking the tyrosine phosphorylation and reducing the gene expression of platelet-derived growth factor-beta receptor. J Biol Chem 278:23381–23389

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Lee MJ, Li H, Yang CS (1997) Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos 25:1045–1050

    CAS  PubMed  Google Scholar 

  • Chen YC, Wu JS, Tsai HD, Huang CY, Chen JJ, Sun GY, Lin TN (2012) Peroxisome proliferator-activated receptor gamma (PPAR-gamma) and neurodegenerative disorders. Mol Neurobiol 46:114–124

    Article  CAS  PubMed  Google Scholar 

  • Chiou Y-S, Wu J-C, Huang Q, Shahidi F, Wang Y-J, Ho C-T, Pan M-H (2014) Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Funct Foods 7:3–25

    Article  CAS  Google Scholar 

  • Chun OK, Chung SJ, Song WO (2007) Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 137:1244–1252

    CAS  PubMed  Google Scholar 

  • Chyu KY, Babbidge SM, Zhao X, Dandillaya R, Rietveld AG, Yano J, Dimayuga P, Cercek B, Shah PK (2004) Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice. Circulation 109:2448–2453

    Article  CAS  PubMed  Google Scholar 

  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci 20:558–567

    CAS  PubMed  Google Scholar 

  • Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363

    Article  CAS  PubMed  Google Scholar 

  • Daniel M, Tollefsbol TO (2015) Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 218:59–70

    Article  PubMed  PubMed Central  Google Scholar 

  • de Tommaso M, Serpino C, Sciruicchio V (2011) Management of Huntington’s disease: role of tetrabenazine. Therapeutics Clin Risk Manag 7:123–129

    Article  CAS  Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, New York

    Google Scholar 

  • Dias T, Tomás G, Teixeira N, Alves M, Oliveira P, Silva B (2013) White tea (Camellia sinensis (L.)): antioxidant properties and beneficial health effects. Int J Food Sci Nutr Diet 2:1–15

    Article  CAS  Google Scholar 

  • Dias TR, Alves MG, Tomas GD, Socorro S, Silva BM, Oliveira PF (2014) White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea. J Agric Food Chem 62:608–617

    Article  CAS  PubMed  Google Scholar 

  • Ding BJ, Ma WW, He LL, Zhou X, Yuan LH, Yu HL, Feng JF, Xiao R (2011) Soybean isoflavone alleviates beta-amyloid 1-42 induced inflammatory response to improve learning and memory ability by down regulation of Toll-like receptor 4 expression and nuclear factor-kappaB activity in rats. Int J Dev Neurosci 29:537–542

    Article  CAS  PubMed  Google Scholar 

  • Doughari JH (2012) Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents. In: Rao DV (ed) Phytochemicals—a global perspective of their role in nutrition and health. INTECH Open Access Publisher, Rijeka, pp 283–359

    Google Scholar 

  • Dragicevic N, Smith A, Lin X, Yuan F, Copes N, Delic V, Tan J, Cao C, Shytle RD, Bradshaw PC (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimer’s Dis 26:507–521

    CAS  Google Scholar 

  • Driver JA (2014) Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology 15:547–557

    Article  CAS  PubMed  Google Scholar 

  • Emilien G, Beyreuther K, Masters CL, Maloteaux JM (2000) Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 57:454–459

    Article  CAS  PubMed  Google Scholar 

  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    CAS  PubMed  Google Scholar 

  • Faria A, Pestana D, Teixeira D, Azevedo J, De Freitas V, Mateus N, Calhau C (2010) Flavonoid transport across RBE4 cells: a blood-brain barrier model. Cell Mol Biol Lett 15:234–241

    Article  CAS  PubMed  Google Scholar 

  • Faria A, Fernandes I, Norberto S, Mateus N, Calhau C (2014) Interplay between anthocyanins and gut microbiota. J Agric Food Chem 62:6898–6902

    Article  CAS  PubMed  Google Scholar 

  • Fischer PM, Lane DP (2000) Inhibitors of cyclin-dependent kinases as anti-cancer therapeutics. Curr Med Chem 7:1213–1245

    Article  CAS  PubMed  Google Scholar 

  • Fresco P, Borges F, Diniz C, Marques MP (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26:747–766

    Article  CAS  PubMed  Google Scholar 

  • Galasko D, Montine TJ (2010) Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med 4:27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37:287–303

    Article  CAS  PubMed  Google Scholar 

  • Galli RL, Shukitt-Hale B, Youdim KA, Joseph JA (2002) Fruit polyphenolics and brain aging: nutritional interventions targeting age-related neuronal and behavioral deficits. Ann N Y Acad Sci 959:128–132

    Article  CAS  PubMed  Google Scholar 

  • Gelderblom M, Leypoldt F, Lewerenz J, Birkenmayer G, Orozco D, Ludewig P, Thundyil J, Arumugam TV, Gerloff C, Tolosa E, Maher P, Magnus T (2012) The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice. J Cereb Blood Flow Metab 32:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanim H, Sia CL, Abuaysheh S, Korzeniewski K, Patnaik P, Marumganti A, Chaudhuri A, Dandona P (2010) An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J Clin Endocrinol Metab 95:E1–E8

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghanim H, Sia CL, Korzeniewski K, Lohano T, Abuaysheh S, Marumganti A, Chaudhuri A, Dandona P (2011) A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal. J Clin Endocrinol Metab 96:1409–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano S, Darley-Usmar V, Zhang J (2014) Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2:82–90

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Castejon M, Rodriguez-Casado A (2011) Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol Res 64:438–455

    Article  CAS  PubMed  Google Scholar 

  • Grossi C, Rigacci S, Ambrosini S, Ed Dami T, Luccarini I, Traini C, Failli P, Berti A, Casamenti F, Stefani M (2013) The polyphenol oleuropein aglycone protects TgCRND8 mice against Ass plaque pathology. PLoS One 8:e71702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Zhao B, Li M, Shen S, Xin W (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1304:210–222

    Article  CAS  PubMed  Google Scholar 

  • Haile WB, Wu J, Echeverry R, Wu F, An J, Yepes M (2012) Tissue-type plasminogen activator has a neuroprotective effect in the ischemic brain mediated by neuronal TNF-alpha. J Cereb Blood Flow Metab 32:57–69

    Article  CAS  PubMed  Google Scholar 

  • Halliday G, Robinson SR, Shepherd C, Kril J (2000) Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol 27:1–8

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1990) The antioxidants of human extracellular fluids. Arch Biochem Biophys 280:1–8

    Article  CAS  PubMed  Google Scholar 

  • Han YS, Bastianetto S, Dumont Y, Quirion R (2006) Specific plasma membrane binding sites for polyphenols, including resveratrol, in the rat brain. J Pharmacol Exp Ther 318:238–245

    Article  CAS  PubMed  Google Scholar 

  • Hansen BG, Halkier BA (2005) New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. Planta 221:603–606

    Article  CAS  PubMed  Google Scholar 

  • Haque AM, Hashimoto M, Katakura M, Tanabe Y, Hara Y, Shido O (2006) Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr 136:1043–1047

    CAS  PubMed  Google Scholar 

  • Hasler CM, Blumberg JB (1999) Phytochemicals: biochemistry and physiology. Introduction. J Nutr 129:756s–757s

    CAS  PubMed  Google Scholar 

  • He Y, Cui J, Lee JC, Ding S, Chalimoniuk M, Simonyi A, Sun AY, Gu Z, Weisman GA, Wood WG, Sun GY (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (−)-epigallocatechin-3-gallate. ASN Neuro 3:e00050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet 342:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Sharma N, Blackman L, Festa E, Reddy G, Pasinetti GM (2005) From proteomics to biomarker discovery in Alzheimer’s disease. Brain Res Rev 48:360–369

    Article  CAS  PubMed  Google Scholar 

  • Hollman PC, Katan MB (1999) Health effects and bioavailability of dietary flavonols. Free Radic Res 31(Suppl):S75–S80

    Article  CAS  PubMed  Google Scholar 

  • Hooper PL, Hooper PL, Tytell M, Vigh L (2010) Xenohormesis: health benefits from an eon of plant stress response evolution. Cell stress Chaperones 15:761–770

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou DX, Kumamoto T (2010) Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal 13:691–719

    Article  CAS  PubMed  Google Scholar 

  • Hou YC, Liou KT, Chern CM, Wang YH, Liao JF, Chang S, Chou YH, Shen YC (2010) Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-kappaB and STAT-1 activation. Phytomedicine 17:963–973

    Article  CAS  PubMed  Google Scholar 

  • Howitz KT, Sinclair DA (2008) Xenohormesis: sensing the chemical cues of other species. Cell 133:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton E Jr, Lee MT (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 128:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang F, Wu XN, Chen J, Wang WX, Lu ZF (2014) Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. Exp Ther Med 7:1611–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Indo HP, Yen HC, Nakanishi I, Matsumoto K, Tamura M, Nagano Y, Matsui H, Gusev O, Cornette R, Okuda T, Minamiyama Y, Ichikawa H, Suenaga S, Oki M, Sato T, Ozawa T, Clair DK, Majima HJ (2015) A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr 56:1–7

    Article  CAS  PubMed  Google Scholar 

  • Isaac JT, Ashby MC, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Investig 111:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasri MA (2009) A report on the antioxidant activity of leaves and rhizomes of Costus pictus D. Don. Int J Integr Biol 5:20–26

    Google Scholar 

  • Jellinger KA (2006) Alzheimer 100—highlights in the history of Alzheimer research. J Neural Transm 113:1603–1623

    Article  CAS  PubMed  Google Scholar 

  • Johannot L, Somerset SM (2006) Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr 9:1045–1054

    Article  PubMed  Google Scholar 

  • Joseph J, Cole G, Head E, Ingram D (2009) Nutrition, brain aging, and neurodegeneration. J Neurosci 29:12795–12801

    Article  CAS  PubMed  Google Scholar 

  • Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA, O’Leary JM, Milbury PE (2008) Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem 56:705–712

    Article  CAS  PubMed  Google Scholar 

  • Karton Y, Jiang JL, Ji XD, Melman N, Olah ME, Stiles GL, Jacobson KA (1996) Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. J Med Chem 39:2293–2301

    Article  CAS  PubMed  Google Scholar 

  • Katavic PL, Lamb K, Navarro H, Prisinzano TE (2007) Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships. J Nat Prod 70:1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelsey NA, Wilkins HM, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15:7792–7814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2:32–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalatbary AR (2013) Olive oil phenols and neuroprotection. Nutr Neurosci 16:243–249

    Article  CAS  PubMed  Google Scholar 

  • Kim JA (2008) Mechanisms underlying beneficial health effects of tea catechins to improve insulin resistance and endothelial dysfunction. Endocr Metab Immune Disord Drug Targets 8:82–88

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Ryu GR, Kang JH, Sim SS, Min DS, Rhie DJ, Yoon SH, Hahn SJ, Jeong IK, Hong KJ, Kim MS, Jo YH (2004) Inhibitory effects of epicatechin on interleukin-1beta-induced inducible nitric oxide synthase expression in RINm5F cells and rat pancreatic islets by down-regulation of NF-kappaB activation. Biochem Pharmacol 68:1775–1785

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Formoso G, Li Y, Potenza MA, Marasciulo FL, Montagnani M, Quon MJ (2007) Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J Biol Chem 282:13736–13745

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Montana V, Jang HJ, Parpura V, Kim JA (2013) Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation. J Biol Chem 288:22693–22705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Quon MJ, Kim JA (2014a) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TH, Shin YJ, Won AJ, Lee BM, Choi WS, Jung JH, Chung HY, Kim HS (2014b) Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta 1840:615–625

    Article  CAS  PubMed  Google Scholar 

  • Kostomoiri M, Fragkouli A, Sagnou M, Skaltsounis LA, Pelecanou M, Tsilibary EC, Tzinia AK (2013) Oleuropein, an anti-oxidant polyphenol constituent of olive promotes alpha-secretase cleavage of the amyloid precursor protein (AbetaPP). Cell Mol Neurobiol 33:147–154

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H, Tsuji I (2006) Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr 83:355–361

    CAS  PubMed  Google Scholar 

  • Kurland LT (1988) Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends Neurosci 11:51–54

    Article  CAS  PubMed  Google Scholar 

  • Lamming DW, Wood JG, Sinclair DA (2004) Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol 53:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Lampl C, You X, Limmroth V (2012) Weekly IM interferon beta-1a in multiple sclerosis patients over 50 years of age. Eur J Neurol 19:142–148

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Choi SH, Shin TJ, Pyo MK, Hwang SH, Lee SM, Paik HD, Kim HC, Nah SY (2011) Effects of quercetin on alpha9alpha10 nicotinic acetylcholine receptor-mediated ion currents. Eur J Pharmacol 650:79–85

    Article  CAS  PubMed  Google Scholar 

  • Lee WK, Chung KW, Kim GH, Kim SJ (2013) Gallotannin causes differentiation and inflammation via ERK1/2 and p38 kinase pathways in rabbit articular chondrocytes. Mol Med Rep 7:701–707

    CAS  PubMed  Google Scholar 

  • Leonov A, Arlia-Ciommo A, Piano A, Svistkova V, Lutchman V, Medkour Y, Titorenko VI (2015) Longevity extension by phytochemicals. Molecules 20:6544–6572

    Article  CAS  PubMed  Google Scholar 

  • Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165:1364–1371

    Article  CAS  PubMed  Google Scholar 

  • Levites Y, Youdim MB, Maor G, Mandel S (2002) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63:21–29

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Daniel M, Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, Chen J (2010) Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem 112:1500–1512

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Xu Y, Han X, Liang C, Yin L, Xu L, Qi Y, Zhao Y, Peng J, Sun C (2014) Potent effects of flavonoid-rich extract from Rosa laevigata Michx fruit against hydrogen peroxide-induced damage in PC12 cells via attenuation of oxidative stress, inflammation and apoptosis. Molecules 19:11816–11832

    Article  PubMed  CAS  Google Scholar 

  • Long J, Gao H, Sun L, Liu J, Zhao-Wilson X (2009) Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Res 12:321–331

    Article  CAS  PubMed  Google Scholar 

  • Louw A, Joubert E, Visser K (2013) Phytoestrogenic potential of Cyclopia extracts and polyphenols. Planta Med 79:580–590

    Article  CAS  PubMed  Google Scholar 

  • Macready AL, Kennedy OB, Ellis JA, Williams CM, Spencer JP, Butler LT (2009) Flavonoids and cognitive function: a review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr 4:227–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci USA 103:16568–16573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37:304–317

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569

    Article  CAS  PubMed  Google Scholar 

  • Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neuro-Signals 14:46–60

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Amit T, Bar-Am O, Youdim MB (2007) Iron dysregulation in Alzheimer’s disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol 82:348–360

    Article  CAS  PubMed  Google Scholar 

  • Margina D, Ilie M, Gradinaru D, Androutsopoulos VP, Kouretas D, Tsatsakis AM (2015) Natural products-friends or foes? Toxicol Lett 236:154–167

    Article  CAS  PubMed  Google Scholar 

  • Martin SL, Hardy TM, Tollefsbol TO (2013) Medicinal chemistry of the epigenetic diet and caloric restriction. Curr Med Chem 20:4050–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Hasegawa H, Okuda S, Muraki T, Uruno T, Kubota K (1995) Ameliorative effects of tea catechins on active oxygen-related nerve cell injuries. J Pharmacol Exp Ther 274:602–608

    CAS  PubMed  Google Scholar 

  • Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29:632–639

    Article  CAS  PubMed  Google Scholar 

  • McCann SE, Freudenheim JL, Marshall JR, Graham S (2003) Risk of human ovarian cancer is related to dietary intake of selected nutrients, phytochemicals and food groups. J Nutr 133:1937–1942

    CAS  PubMed  Google Scholar 

  • McKay DL, Blumberg JB (2002) The role of tea in human health: an update. J Am Coll Nutr 21:1–13

    Article  CAS  PubMed  Google Scholar 

  • Medina JH, Viola H, Wolfman C, Marder M, Wasowski C, Calvo D, Paladini AC (1998) Neuroactive flavonoids: new ligands for the benzodiazepine receptors. Phytomedicine 5:235–243

    Article  CAS  PubMed  Google Scholar 

  • Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1:101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez JA, Joven J, Aragones G, Barrajon-Catalan E, Beltran-Debon R, Borras-Linares I, Camps J, Corominas-Faja B, Cufi S, Fernandez-Arroyo S, Garcia-Heredia A, Hernandez-Aguilera A, Herranz-Lopez M, Jimenez-Sanchez C, Lopez-Bonet E, Lozano-Sanchez J, Luciano-Mateo F, Martin-Castillo B, Martin-Paredero V, Perez-Sanchez A, Oliveras-Ferraros C, Riera-Borrull M, Rodriguez-Gallego E, Quirantes-Pine R, Rull A, Tomas-Menor L, Vazquez-Martin A, Alonso-Villaverde C, Micol V, Segura-Carretero A (2013) Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 12:555–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milbury PE, Kalt W (2010) Xenobiotic metabolism and berry flavonoid transport across the blood-brain barrier. J Agric Food Chem 58:3950–3956

    Article  CAS  PubMed  Google Scholar 

  • Milenkovic D, Deval C, Gouranton E, Landrier JF, Scalbert A, Morand C, Mazur A (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One 7:e29837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller PE, Snyder DC (2012) Phytochemicals and cancer risk: a review of the epidemiological evidence. Nutr Clin Pract 27:599–612

    Article  PubMed  Google Scholar 

  • Moderno PM, Carvalho M, Silva BM (2009) Recent patents on Camellia sinensis: source of health promoting compounds. Recent Pat Food Nutr Agric 1:182–192

    Article  CAS  PubMed  Google Scholar 

  • Monagas M, Urpi-Sarda M, Sanchez-Patan F, Llorach R, Garrido I, Gomez-Cordoves C, Andres-Lacueva C, Bartolome B (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1:233–253

    Article  CAS  PubMed  Google Scholar 

  • Morley JE (2002) The SAMP8 mouse: a model of Alzheimer disease? Biogerontology 3:57–60

    Article  CAS  PubMed  Google Scholar 

  • Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy 6:186–188

    Article  PubMed  Google Scholar 

  • Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, Lopez-Otin C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami A (2014) Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch Biochem Biophys 557:3–10

    Article  CAS  PubMed  Google Scholar 

  • Mylonas C, Kouretas D (1999) Lipid peroxidation and tissue damage. In Vivo (Athens, Greece) 13:295–309

    CAS  Google Scholar 

  • Nakagawa H, Hasumi K, Woo JT, Nagai K, Wachi M (2004) Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (−)-epigallocatechin gallate. Carcinogenesis 25:1567–1574

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Takio S, Ono K (1998) Alkyl peroxyl radical-scavenging activity of catechins. Phytochemistry 49:2379–2382

    Article  CAS  PubMed  Google Scholar 

  • Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21:895–902

    Article  CAS  PubMed  Google Scholar 

  • Napoli E, Taroni F, Cortopassi GA (2006) Frataxin, iron-sulfur clusters, heme, ROS, and aging. Antioxid Redox Signal 8:506–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neely MD, Montine TJ (2002) CSF lipoproteins and Alzheimer’s disease. J Nutr Health Aging 6:383–391

    CAS  PubMed  Google Scholar 

  • Nifli AP, Bosson-Kouame A, Papadopoulou N, Kogia C, Kampa M, Castagnino C, Stournaras C, Vercauteren J, Castanas E (2005) Monomeric and oligomeric flavanols are agonists of membrane androgen receptors. Exp Cell Res 309:329–339

    Article  CAS  PubMed  Google Scholar 

  • Nunes AR, Alves MG, Moreira PI, Oliveira PF, Silva BM (2014) Can tea consumption be a safe and effective therapy against diabetes mellitus-induced neurodegeneration? Curr Neuropharmacol 12:475–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes AR, Alves MG, Tomas GD, Conde VR, Cristovao AC, Moreira PI, Oliveira PF, Silva BM (2015) Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats. Br J Nutr 113:832–842

    Article  CAS  PubMed  Google Scholar 

  • Nurk E, Refsum H, Drevon CA, Tell GS, Nygaard HA, Engedal K, Smith AD (2009) Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr 139:120–127

    Article  CAS  PubMed  Google Scholar 

  • Obrenovich ME, Nair NG, Beyaz A, Aliev G, Reddy VP (2010) The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 13:631–643

    Article  CAS  PubMed  Google Scholar 

  • Obrenovich ME, Li Y, Parvathaneni K, Yendluri BB, Palacios HH, Leszek J, Aliev G (2011) Antioxidants in health, disease and aging. CNS Neurol Disord Drug Targets 10:192–207

    Article  CAS  PubMed  Google Scholar 

  • Okello EJ, McDougall GJ, Kumar S, Seal CJ (2011) In vitro protective effects of colon-available extract of Camellia sinensis (tea) against hydrogen peroxide and beta-amyloid (Abeta((1-42))) induced cytotoxicity in differentiated PC12 cells. Phytomedicine 18:691–696

    Article  CAS  PubMed  Google Scholar 

  • Ovaskainen ML, Torronen R, Koponen JM, Sinkko H, Hellstrom J, Reinivuo H, Mattila P (2008) Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr 138:562–566

    CAS  PubMed  Google Scholar 

  • Pallauf K, Rimbach G (2013) Autophagy, polyphenols and healthy ageing. Ageing Res Rev 12:237–252

    Article  CAS  PubMed  Google Scholar 

  • Pannala AS, Rice-Evans CA, Halliwell B, Singh S (1997) Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem Biophys Res Commun 232:164–168

    Article  CAS  PubMed  Google Scholar 

  • Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, Lamari FN (2009) Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 198:352–358

    Article  CAS  PubMed  Google Scholar 

  • Paris D, Mathura V, Ait-Ghezala G, Beaulieu-Abdelahad D, Patel N, Bachmeier C, Mullan M (2011) Flavonoids lower Alzheimer’s Abeta production via an NFkappaB dependent mechanism. Bioinformation 6:229–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Patir H, Sarada SK, Singh S, Mathew T, Singh B, Bansal A (2012) Quercetin as a prophylactic measure against high altitude cerebral edema. Free Radic Biol Med 53:659–668

    Article  CAS  PubMed  Google Scholar 

  • Perez-De La Cruz V, Elinos-Calderon D, Robledo-Arratia Y, Medina-Campos ON, Pedraza-Chaverri J, Ali SF, Santamaria A (2009) Targeting oxidative/nitrergic stress ameliorates motor impairment, and attenuates synaptic mitochondrial dysfunction and lipid peroxidation in two models of Huntington’s disease. Behav Brain Res 199:210–217

    Article  CAS  PubMed  Google Scholar 

  • Perez-Jimenez J, Neveu V, Vos F, Scalbert A (2010) Identification of the 100 richest dietary sources of polyphenols: an application of the phenol-explorer database. Eur J Clin Nutr 64(Suppl 3):S112–S120

    Article  CAS  PubMed  Google Scholar 

  • Perry G, Cash AD, Smith MA (2002) Alzheimer disease and oxidative stress. J Biomed Biotechnol 2:120–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitchumoni SS, Doraiswamy PM (1998) Current status of antioxidant therapy for Alzheimer’s disease. J Am Geriatr Soc 46:1566–1572

    Article  CAS  PubMed  Google Scholar 

  • Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, Kim JA, Quon MJ, Montagnani M (2007) EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 292:E1378–E1387

    Article  CAS  PubMed  Google Scholar 

  • Prochazkova D, Bousova I, Wilhelmova N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Vila M, Jackson-Lewis V (2003) Neurodegeneration: what is it and where are we? J Clin Investig 111:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452

    Article  CAS  PubMed  Google Scholar 

  • Rambold AS, Miesbauer M, Olschewski D, Seidel R, Riemer C, Smale L, Brumm L, Levy M, Gazit E, Oesterhelt D, Baier M, Becker CF, Engelhard M, Winklhofer KF, Tatzelt J (2008) Green tea extracts interfere with the stress-protective activity of PrP and the formation of PrP. J Neurochem 107:218–229

    Article  CAS  PubMed  Google Scholar 

  • Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P (2004) Alpha-synuclein and Parkinson’s disease. FASEB J 18:617–626

    Article  CAS  PubMed  Google Scholar 

  • Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51:1302–1319

    Article  CAS  PubMed  Google Scholar 

  • Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA (2008) Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis 30:107–120

    Article  CAS  PubMed  Google Scholar 

  • Reiners JJ Jr, Lee JY, Clift RE, Dudley DT, Myrand SP (1998) PD98059 is an equipotent antagonist of the aryl hydrocarbon receptor and inhibitor of mitogen-activated protein kinase kinase. Mol Pharmacol 53:438–445

    CAS  PubMed  Google Scholar 

  • Reiter RJ (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9:526–533

    CAS  PubMed  Google Scholar 

  • Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B, Milagro FI, Martinez AJ, Haslberger AG (2015) Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 172:2756–2768

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Fan C, Chen N, Huang J, Yang Q (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 36:2352–2362

    Article  CAS  PubMed  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C (1999) Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soc Exp Biol Med Soc Exp Biol Med 220:262–266

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Richa Tyagi EM, Meeta M, Ruhal D (2015) The phisiochemical standards of Dyerophytum Rubrum Gibs. EX WT and Plumbago Zeylanica L leaf: a co-comparison. World J Pharm Pharm Sci 4:6

    Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520

    Article  CAS  PubMed  Google Scholar 

  • Rigacci S, Stefani M (2015) Nutraceuticals and amyloid neurodegenerative diseases: a focus on natural phenols. Expert Rev Neurother 15:41–52

    Article  CAS  PubMed  Google Scholar 

  • Roche A, Ross E, Walsh N, O’Donnell K, Williams A, Klapp M, Fullard N, Edelstein S (2015) Representative literature on the phytonutrients category: phenolic acids. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2013.865589

  • Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G (2008) Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochem Res 33:2390–2400

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Acquaviva R, Campisi A, Sorrenti V, Di Giacomo C, Virgata G, Barcellona ML, Vanella A (2000) Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol Toxicol 16:91–98

    Article  CAS  PubMed  Google Scholar 

  • Ryan J, Croft K, Mori T, Wesnes K, Spong J, Downey L, Kure C, Lloyd J, Stough C (2008) An examination of the effects of the antioxidant Pycnogenol on cognitive performance, serum lipid profile, endocrinological and oxidative stress biomarkers in an elderly population. J Psychopharmacol 22:553–562

    Article  CAS  PubMed  Google Scholar 

  • Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322:339–346

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Acuna C, Ferreira J, Speisky H (2014) Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 559:75–90

    Article  CAS  PubMed  Google Scholar 

  • Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81:215s–217s

    CAS  PubMed  Google Scholar 

  • Schaffer S, Halliwell B (2012) Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr 7:99–109

    Article  CAS  PubMed  Google Scholar 

  • Schaffer S, Eckert GP, Schmitt-Schillig S, Muller WE (2006) Plant foods and brain aging: a critical appraisal. Forum Nutr 59:86–115

    Article  CAS  PubMed  Google Scholar 

  • Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP (2012) Effects of polyphenols on brain ageing and Alzheimer’s disease: focus on mitochondria. Mol Neurobiol 46:161–178

    Article  CAS  PubMed  Google Scholar 

  • Schroeter H, Spencer JP, Rice-Evans C, Williams RJ (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeter H, Bahia P, Spencer JP, Sheppard O, Rattray M, Cadenas E, Rice-Evans C, Williams RJ (2007) (−)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem 101:1596–1606

    Article  CAS  PubMed  Google Scholar 

  • Sears B, Ricordi C (2012) Role of fatty acids and polyphenols in inflammatory gene transcription and their impact on obesity, metabolic syndrome and diabetes. Eur Rev Med Pharmacol Sci 16:1137–1154

    CAS  PubMed  Google Scholar 

  • Seeram NP, Henning SM, Niu Y, Lee R, Scheuller HS, Heber D (2006) Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J Agric Food Chem 54:1599–1603

    Article  CAS  PubMed  Google Scholar 

  • Shah ZA, Li RC, Ahmad AS, Kensler TW, Yamamoto M, Biswal S, Dore S (2010) The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 30:1951–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanafelt TD, Call TG, Zent CS, LaPlant B, Bowen DA, Roos M, Secreto CR, Ghosh AK, Kabat BF, Lee MJ, Yang CS, Jelinek DF, Erlichman C, Kay NE (2009) Phase I trial of daily oral polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J Clin Oncol 27:3808–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin BY, Jin SH, Cho IJ, Ki SH (2012) Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radic Biol Med 53:834–841

    Article  CAS  PubMed  Google Scholar 

  • Si H, Liu D (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem 25:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simao F, Matte A, Pagnussat AS, Netto CA, Salbego CG (2012) Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3beta and CREB through PI3-K/Akt pathways. Eur J Neurosci 36:2899–2905

    Article  PubMed  Google Scholar 

  • Simonyi A, Wang Q, Miller RL, Yusof M, Shelat PB, Sun AY, Sun GY (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31:135–147

    Article  CAS  PubMed  Google Scholar 

  • Singer C (2012) Managing the patient with newly diagnosed Parkinson disease. Clevel Clin J Med 79(Suppl 2):S3–S7

    Article  Google Scholar 

  • Singletary K, Milner J (2008) Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomark Prev 17:1596–1610

    Article  CAS  Google Scholar 

  • Smith C, Mitchinson MJ, Aruoma OI, Halliwell B (1992) Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions. Biochem J 286(Pt 3):901–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352

    Article  CAS  PubMed  Google Scholar 

  • Somani SJ, Modi KP, Majumdar AS, Sadarani BN (2015) Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother Res 29:339–350

    Article  CAS  PubMed  Google Scholar 

  • Spanou CI, Veskoukis AS, Stagos D, Liadaki K, Aligiannis N, Angelis A, Skaltsounis AL, Anastasiadi M, Haroutounian SA, Kouretas D (2012) Effects of Greek legume plant extracts on xanthine oxidase, catalase and superoxide dismutase activities. J Physiol Biochem 68:37–45

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP (2008) Flavonoids: modulators of brain function? Br J Nutr 99(E Suppl 1):Es60–Es77

    PubMed  Google Scholar 

  • Spencer JP (2009) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JP, Schroeter H, Crossthwaithe AJ, Kuhnle G, Williams RJ, Rice-Evans C (2001) Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Free Radic Biol Med 31:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Sramek JJ, Cutler NR (1999) Recent developments in the drug treatment of Alzheimer’s disease. Drugs Aging 14:359–373

    Article  CAS  PubMed  Google Scholar 

  • Stagos D, Portesis N, Spanou C, Mossialos D, Aligiannis N, Chaita E, Panagoulis C, Reri E, Skaltsounis L, Tsatsakis AM, Kouretas D (2012) Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food Chem Toxicol 50:4115–4124

    Article  CAS  PubMed  Google Scholar 

  • Stefani M, Rigacci S (2014) Beneficial properties of natural phenols: highlight on protection against pathological conditions associated with amyloid aggregation. BioFactors 40:482–493

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Subczynski WK, Hyde JS (1983) Concentration of oxygen in lipid bilayers using a spin-label method. Biophys J 41:283–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahara S (2007) A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotechnol Biochem 71:1387–1404

    Article  CAS  PubMed  Google Scholar 

  • Talavera S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, Lamaison JL, Remesy C (2005) Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem 53:3902–3908

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Kerry JP, Sheehan D, Buckley DJ, Morrissey PA (2001) Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Res Int 34:651–657

    Article  CAS  Google Scholar 

  • Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, Pinlaor S, Yongvanit P, Kawanishi S, Murata M (2015) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16:193–217

    Article  CAS  Google Scholar 

  • Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792:643–650

    Article  CAS  PubMed  Google Scholar 

  • Uddin SN, Akond M, Mubassara S, Yesmin MN (2008) Antioxidant and antibacterial activities of Trema cannabina Middle-East. J Sci Res 3:105–108

    Google Scholar 

  • Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V, Bresciani LG, Ferrario M, Borsani G, Spano P, Pizzi M (2006) NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci 23:1711–1720

    Article  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Van Amelsvoort JM, Van Hof KH, Mathot JN, Mulder TP, Wiersma A, Tijburg LB (2001) Plasma concentrations of individual tea catechins after a single oral dose in humans. Xenobiotica 31:891–901

    Article  PubMed  CAS  Google Scholar 

  • Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  Google Scholar 

  • Vasanthi HR, ShriShriMal N, Das DK (2012) Phytochemicals from plants to combat cardiovascular disease. Curr Med Chem 19:2242–2251

    Article  CAS  PubMed  Google Scholar 

  • Visioli F, Bellomo G, Galli C (1998) Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 247:60–64

    Article  CAS  PubMed  Google Scholar 

  • Visioli F, De La Lastra CA, Andres-Lacueva C, Aviram M, Calhau C, Cassano A, D’Archivio M, Faria A, Fave G, Fogliano V, Llorach R, Vitaglione P, Zoratti M, Edeas M (2011) Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr 51:524–546

    Article  CAS  PubMed  Google Scholar 

  • Vitrac X, Desmouliere A, Brouillaud B, Krisa S, Deffieux G, Barthe N, Rosenbaum J, Merillon JM (2003) Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci 72:2219–2233

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DS, Wheeler WJ (2004) The medicinal chemistry of tea. Drug Dev Res 61:45–65

    Article  CAS  Google Scholar 

  • Wightman EL, Haskell CF, Forster JS, Veasey RC, Kennedy DO (2012) Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum Psychopharmacol 27:177–186

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Spencer JP (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52:35–45

    Article  CAS  PubMed  Google Scholar 

  • Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord 17:63–67

    Article  PubMed  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Winner B, Kohl Z, Gage FH (2011) Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 33:1139–1151

    Article  PubMed  Google Scholar 

  • Wu Z, Song L, Liu SQ, Huang D (2014) Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98:8617–8628

    Article  CAS  PubMed  Google Scholar 

  • Xu YW, Sun L, Liang H, Sun GM, Cheng Y (2010) 12/15-Lipoxygenase inhibitor baicalein suppresses PPAR gamma expression and nuclear translocation induced by cerebral ischemia/reperfusion. Brain Res 1307:149–157

    Article  CAS  PubMed  Google Scholar 

  • Xue X, Qu XJ, Yang Y, Sheng XH, Cheng F, Jiang EN, Wang JH, Bu W, Liu ZP (2010) Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor kappaB p65 activation. Biochem Biophys Res Commun 403:398–404

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Hong J, Hou Z, Sang S (2004) Green tea polyphenols: antioxidative and prooxidative effects. J Nutr 134:3181s

    CAS  PubMed  Google Scholar 

  • Youdim KA, Joseph JA (2001) A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med 30:583–594

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 85:180–192

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ (2004a) Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med 36:592–604

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Shukitt-Hale B, Joseph JA (2004b) Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 37:1683–1693

    Article  CAS  PubMed  Google Scholar 

  • Yun JW (2010) Possible anti-obesity therapeutics from nature—a review. Phytochemistry 71:1625–1641

    Article  CAS  PubMed  Google Scholar 

  • Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventós RM, Berenguer T, Jakszyn P, Barricarte A, Ardanaz E, Amiano P, Dorronsoro M, Larrañaga N (2010) Estimation of dietary sources and flavonoid intake in a Spanish adult population (EPIC-Spain). J Am Diet Assoc 110:390–398

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab 25:30–40

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese “Fundação para a Ciência e a Tecnologia”—FCT: SA (SFRH/BD/112012/2015), MGA (SFRH/BPD/80451/2011 and PTDC/BIM-MET/4712/2014), PFO (SFRH/BPD/108837/2015), CICS-UBI (Pest-C/SAU/UI0709/2014) and UMIB (Pest-OE/SAU/UI0215/2014) were co-funded by FEDER via Programa Operacional Fatores de Competitividade-COMPETE/QREN & FSE and POPH funds. The authors are grateful to Susana Barber, PhD, for professional English proofreading and linguistic suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branca M. Silva.

Additional information

Susana Almeida and Marco G. Alves have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, S., Alves, M.G., Sousa, M. et al. Are Polyphenols Strong Dietary Agents Against Neurotoxicity and Neurodegeneration?. Neurotox Res 30, 345–366 (2016). https://doi.org/10.1007/s12640-015-9590-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9590-4

Keywords

Navigation