Skip to main content

Advertisement

Log in

Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) and Neurodegenerative Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As the growth of the aging population continues to accelerate globally, increased prevalence of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and stroke, has generated substantial public concern. Unfortunately, despite of discoveries of common factors underlying these diseases, few drugs are available to effectively treat these diseases. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPAR-γ has been shown to influence the expression or activity of a large number of genes in a variety of signaling networks, including regulation of insulin sensitivity, glucose homeostasis, fatty acid oxidation, immune responses, redox balance, cardiovascular integrity, and cell fates. Recent epidemiological, preclinical animal, and clinical studies also show that PPAR-γ agonists can lower the incidence of a number of neurological disorders, despite of multiple etiological factors involved in the development of these disorders. In this manuscript, we review current knowledge on mechanisms underlying the beneficial effect of PPAR-γ in different neurodegenerative diseases, in particular, AD, PD, and stroke, and attempt to analyze common and overlapping features among these diseases. Our investigation unveiled information suggesting the ability for PPAR-γ to inhibit NF-κB-mediated inflammatory signaling at multiple sites, and conclude that PPAR-γ agonists represent a novel class of drugs for treating neuroinflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacobsen LA, Kent M, Lee M, Mather M (2011) American's aging population. Popul Bull 66:2–18

    Google Scholar 

  2. Sonntag KC (2010) MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res 1338:48–57

    Article  PubMed  CAS  Google Scholar 

  3. Byrne SC, Rowland LP, Vonsattel JP, Welzel AT, Walsh DM, Hardiman O (2011) Common themes in the pathogenesis of neurodegeneration. In: Hardiman O, Doherty CP (eds) Neurodegenerative disorders [electronic resource]: a clinical guide. Springer-Verlag London Limited, London, pp 1–15

    Google Scholar 

  4. Haass C (2010) Initiation and propagation of neurodegeneration. Nat Med 16:1201–1204

    Article  PubMed  CAS  Google Scholar 

  5. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487

    Article  PubMed  CAS  Google Scholar 

  6. Jellinger KA (2012) Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med. doi:10.1111/j.1582-4934.2011.01507.x

  7. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  PubMed  CAS  Google Scholar 

  8. Collino M, Patel NS, Thiemermann C (2008) PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther Adv Cardiovasc Dis 2:179–197

    Article  PubMed  Google Scholar 

  9. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887

    Article  PubMed  CAS  Google Scholar 

  10. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-γ-RXR-α nuclear receptor complex on DNA. Nature 456:350–356

    Article  PubMed  Google Scholar 

  11. Willson TM, Lambert MH, Kliewer SA (2001) Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 70:341–367

    Article  PubMed  CAS  Google Scholar 

  12. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  PubMed  CAS  Google Scholar 

  13. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  PubMed  CAS  Google Scholar 

  14. Biscetti F, Straface G, Pitocco D, Zaccardi F, Ghirlanda G, Flex A (2009) Peroxisome proliferator-activated receptors and angiogenesis. Nutr Metab Cardiovasc Dis 19:751–759

    Article  PubMed  CAS  Google Scholar 

  15. Bright JJ, Kanakasabai S, Chearwae W, Chakraborty S (2008) PPAR regulation of inflammatory signaling in CNS diseases. PPAR Res 2008:658520

    Article  PubMed  Google Scholar 

  16. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52

    Article  PubMed  CAS  Google Scholar 

  17. Duan SZ, Usher MG, Mortensen RM (2009) PPARs: the vasculature, inflammation and hypertension. Curr Opin Nephrol Hypertens 18:128–133

    Article  PubMed  CAS  Google Scholar 

  18. Hamblin M, Chang L, Fan Y, Zhang J, Chen YE (2009) PPARs and the cardiovascular system. Antioxid Redox Sig 11:1415–1452

    Article  CAS  Google Scholar 

  19. Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    Article  PubMed  CAS  Google Scholar 

  20. Lin TN, Cheung WM, Wu JS, Chen JJ, Lin H, Chen JJ, Liou JY, Shyue SK, Wu KK (2006) 15d-Prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 26:481–487

    Article  PubMed  CAS  Google Scholar 

  21. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391:79–82

    Article  PubMed  CAS  Google Scholar 

  22. Tsai YS, Kim HJ, Takahashi N, Kim HS, Hagaman JR, Kim JK, Maeda N (2004) Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARgamma. J Clin Invest 114:240–249

    PubMed  CAS  Google Scholar 

  23. Varga T, Czimmerer Z, Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 1812:1007–1022

    Article  PubMed  CAS  Google Scholar 

  24. Wu JS, Cheung WM, Tsai YS, Chen YT, Fong WH, Tsai HD, Chen YC, Liou JY, Shyue SK, Chen JJ, Chen YE, Maeda N, Wu KK, Lin TN (2009) Ligand-activated peroxisome proliferator-activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3 epsilon upregulation. Circulation 119:1124–1134

    Article  PubMed  CAS  Google Scholar 

  25. Pialat JB, Cho TH, Beuf O, Joye E, Moucharrafie S, Langlois JB, Nemoz C, Janier M, Berthezene Y, Nighoghossian N, Desvergne B, Wiart M (2007) MRI monitoring of focal cerebral ischemia in peroxisome proliferator-activated receptor (PPAR)-deficient mice. NMR Biomed 20:335–342

    Article  PubMed  CAS  Google Scholar 

  26. Wu JS, Lin TN, Wu KK (2009) Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol 220:58–71

    Article  PubMed  CAS  Google Scholar 

  27. Semple RK, Chatterjee VK, O'Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116:581–589

    Article  PubMed  CAS  Google Scholar 

  28. Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045

    Article  PubMed  CAS  Google Scholar 

  29. Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, Reddy JK (1995) Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA 92:7921–7925

    Article  PubMed  CAS  Google Scholar 

  30. Ershov AV, Bazan NG (2000) Photoreceptor phagocytosis selectively activates PPARgamma expression in retinal pigment epithelial cells. J Neurosci Res 60:328–337

    Article  PubMed  CAS  Google Scholar 

  31. Guardiola-Diaz HM, Rehnmark S, Usuda N, Albrektsen T, Feltkamp D, Gustafsson JA, Alexson SE (1999) Rat peroxisome proliferator-activated receptors and brown adipose tissue function during cold acclimatization. J Biol Chem 274:23368–23377

    Article  PubMed  CAS  Google Scholar 

  32. Zhou J, Wilson KM, Medh JD (2002) Genetic analysis of four novel peroxisome proliferator activated receptor-gamma splice variants in monkey macrophages. Biochem Biophys Res Commun 293:274–283

    Article  PubMed  CAS  Google Scholar 

  33. Chen Y, Jimenez AR, Medh JD (2006) Identification and regulation of novel PPAR-gamma splice variants in human THP-1 macrophages. Biochim Biophys Acta 1759:32–43

    Article  PubMed  CAS  Google Scholar 

  34. Fong WH, Tsai HD, Chen YC, Wu JS, Lin TN (2010) Anti-apoptotic actions of PPAR-gamma against ischemic stroke. Mol Neurobiol 41:180–186

    Article  PubMed  CAS  Google Scholar 

  35. Villacorta L, Schopfer FJ, Zhang J, Freeman BA, Chen YE (2009) PPARgamma and its ligands: therapeutic implications in cardiovascular disease. Clin Sci (Lond) 116:205–218

    Article  CAS  Google Scholar 

  36. Zhao X, Zhang Y, Strong R, Grotta JC, Aronowski J (2006) 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 26:811–820

    Article  PubMed  CAS  Google Scholar 

  37. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    Article  PubMed  CAS  Google Scholar 

  38. Rubenstrunk A, Hanf R, Hum DW, Fruchart JC, Staels B (2007) Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 1771:1065–1081

    Article  PubMed  CAS  Google Scholar 

  39. Winterstein AG (2011) Rosiglitazone and the risk of adverse cardiovascular outcomes. Clin Pharmacol Ther 89:776–778

    Article  PubMed  CAS  Google Scholar 

  40. Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, Dello Russo C (2005) Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol 70:177–188

    Article  PubMed  CAS  Google Scholar 

  41. Scher JU, Pillinger MH (2005) 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol 114:100–109

    Article  PubMed  CAS  Google Scholar 

  42. Tsukada J, Yoshida Y, Kominato Y, Auron PE (2011) The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine 54:6–19

    Article  PubMed  CAS  Google Scholar 

  43. Clarke SL, Robinson CE, Gimble JM (1997) CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun 240:99–103

    Article  PubMed  CAS  Google Scholar 

  44. Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A et al (2008) PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22:2941–2952

    Article  PubMed  CAS  Google Scholar 

  45. Wang YL, Frauwirth KA, Rangwala SM, Lazar MA, Thompson CB (2002) Thiazolidinedione activation of peroxisome proliferator-activated receptor gamma can enhance mitochondrial potential and promote cell survival. J Biol Chem 277:31781–31788

    Article  PubMed  CAS  Google Scholar 

  46. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  PubMed  CAS  Google Scholar 

  47. Jacobs MD, Harrison SC (1998) Structure of an IκBalpha/NF-κB complex. Cell 95:749–758

    Article  PubMed  CAS  Google Scholar 

  48. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708

    Article  PubMed  CAS  Google Scholar 

  49. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716

    Article  PubMed  CAS  Google Scholar 

  50. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  PubMed  CAS  Google Scholar 

  51. Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    Article  PubMed  CAS  Google Scholar 

  52. Bordet R, Ouk T, Petrault O, Gelé P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34:1341–1346

    Article  PubMed  CAS  Google Scholar 

  53. Culman J, Zhao Y, Gohlke P, Herdegen T (2007) PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 28:244–249

    Article  PubMed  CAS  Google Scholar 

  54. Giaginis C, Tsourouflis G, Theocharis S (2008) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands: novel pharmacological agents in the treatment of ischemia reperfusion injury. Curr Mol Med 8:562–579

    Article  PubMed  CAS  Google Scholar 

  55. Kapadia R, Yi JH, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 13:1813–1826

    Article  PubMed  CAS  Google Scholar 

  56. Heneka MT, Kummer MP, Weggen S, Bulic B, Multhaup G, Münter L, Hüll M, Pflanzner T, Pietrzik CU (2011) Molecular mechanisms and therapeutic application of NSAIDs and derived compounds in Alzheimer's disease. Curr Alzheimer Res 8:115–311

    Article  PubMed  CAS  Google Scholar 

  57. Heneka MT, Landreth GE, Hüll M (2007) Drug insight: effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat Clin Pract Neurol 3:496–504

    Article  PubMed  CAS  Google Scholar 

  58. Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease. Neurotherapeutics 5:481–489

    Article  PubMed  CAS  Google Scholar 

  59. Lee YJ, Han SB, Nam SY, Oh KW, Hong JT (2010) Inflammation and Alzheimer's disease. Arch Pharm Res 33:1539–1556

    Article  PubMed  CAS  Google Scholar 

  60. Lleo A, Galea E, Sastre M (2007) Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell Mol Life Sci 64:1403–1418

    Article  PubMed  CAS  Google Scholar 

  61. Shie FS, Nivison M, Hsu PC, Montine TJ (2009) Modulation of microglial innate immunity in Alzheimer's disease by activation of peroxisome proliferator-activated receptor gamma. Curr Med Chem 16:643–651

    Article  PubMed  CAS  Google Scholar 

  62. Asanuma M, Miyazaki I (2008) Nonsteroidal anti-inflammatory drugs in experimental parkinsonian models and Parkinson's disease. Curr Pharm Des 14:1428–1434

    Article  PubMed  CAS  Google Scholar 

  63. Carta AR, Pisanu A, Carboni E (2011) Do PPAR-gamma agonists have a future in parkinson's disease therapy? Park Dis 2011:689181

    Google Scholar 

  64. Chaturvedi RK, Beal MF (2008) PPAR: a therapeutic target in Parkinson's disease. J Neurochem 106:506–518

    Article  PubMed  CAS  Google Scholar 

  65. Clark J, Simon DK (2009) Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxid Redox Signal 11:509–528

    Article  PubMed  CAS  Google Scholar 

  66. Randy LH, Guoying B (2007) Agonism of peroxisome proliferator receptor-gamma may have therapeutic potential for neuroinflammation and Parkinson's disease. Curr Neuropharmacol 5:35–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from National Science Council and Academia Sinica in Taiwan.

The <networks, functional analyses, pathways…etc.> were generated through the use of IPA (Ingenuity Systems, www.ingenuity.com). The set of molecules are the user's dataset or molecules in Ingenuity's Knowledge Base (genes, endogenous chemicals, or both).

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng-Nan Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YC., Wu, JS., Tsai, HD. et al. Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) and Neurodegenerative Disorders. Mol Neurobiol 46, 114–124 (2012). https://doi.org/10.1007/s12035-012-8259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8259-8

Keywords

Navigation