Skip to main content
Log in

Device Engineering of Lead-free Double Perovskite (Cs4CuSb2Cl12 & Cs2AgBiBr6)/Crystalline Silicon High-Performance Eco-friendly Tandem Solar Cells

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Lead-free double perovskites are a newly developed category of non-toxic material with impressive photoelectric properties and excellent inherent environmental stability. This study explores the design and performance optimization of lead-free double perovskite/c-Si tandem devices (TDs). Two top cells (TCs) made of \({\text{C}\text{s}}_{4}\text{C}\text{u}\text{S}{\text{b}}_{2}{\text{C}\text{l}}_{12}\) (bandgap of 1.6 eV) and \({\text{C}\text{s}}_{2}\text{A}\text{g}\text{B}\text{i}{\text{B}\text{r}}_{6}\) (bandgap of 2.05 eV) absorber materials and the bottom cell (BC) of c-Si (bandgap of 1.12 eV), have been utilized for designing two TDs. To design an efficient TD’s structure, TC and BC were first individually simulated and calibrated against the findings derived from the reported experimental data. The absorber’s thickness of TC reaches the current matching, when the current it generates under AM 1.5G spectrum matches the BC’s current under a filtered spectrum (generated through TC). At current matching condition, the optimized values of thickness of \({\text{C}\text{s}}_{4}\text{C}\text{u}\text{S}{\text{b}}_{2}{\text{C}\text{l}}_{12}\) and \({\text{C}\text{s}}_{2}\text{A}\text{g}\text{B}\text{i}{\text{B}\text{r}}_{6}\) layers are 0.418 and 1.29 μm, respectively. The lead-free \({\text{C}\text{s}}_{4}\text{C}\text{u}\text{S}{\text{b}}_{2}{\text{C}\text{l}}_{12}/\text{c}-\text{S}\text{i}\) and \({\text{C}\text{s}}_{2}\text{A}\text{g}\text{B}\text{i}{\text{B}\text{r}}_{6}/\text{c}-\text{S}\text{i}\) TDs exhibit a PCE (power conversion efficiency) value of 34.67% (\({\text{V}}_{\text{O}\text{C}}\) = 1.82 V, \({\text{J}}_{\text{S}\text{C}}\) = 20.75 \({\text{m}\text{A}/\text{c}\text{m}}^{2}\), FF = 88.31%) and 36.88% (\({\text{V}}_{\text{O}\text{C}}\) = 2.16 V, \({\text{J}}_{\text{S}\text{C}}\) = 21.105 \({\text{m}\text{A}/\text{c}\text{m}}^{2}\), FF = 79.68%), respectively. Performance parameters of TDs obtained from this work are comparable to the results of reported experiments and simulations. Analysis of this study reveals that enhancing PCE of double-perovskite TC is essential to promise the TD’s benefits. The results reported demonstrate that lead-free and stable double perovskite materials can act as an essential absorber in sub-cells for highly efficient, commercially viable, non-toxic and eco-friendly tandem photovoltaic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Andreani LC, Bozzola A, Kowalczewski P et al (2019) Silicon solar cells: toward the efficiency limits. Adv Phys X 4:1548305. https://doi.org/10.1080/23746149.2018.1548305

    Article  CAS  Google Scholar 

  2. Green MA, Dunlop ED, Siefer G et al (2023) Solar cell efficiency tables (Version 61). Prog Photovoltaics Res Appl 31:3–16. https://doi.org/10.1002/pip.3646

    Article  Google Scholar 

  3. Alharbi FH, Kais S (2015) Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew Sustain Energy Rev 43:1073–1089. https://doi.org/10.1016/j.rser.2014.11.101

    Article  Google Scholar 

  4. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. https://doi.org/10.1063/1.1736034

    Article  ADS  CAS  Google Scholar 

  5. Zhang C, Gwamuri J, Andrews R, Pearce JM (2014) Design of multijunction photovoltaic cells optimized for varied atmospheric conditions. Int J Photoenergy 2014:1–8. https://doi.org/10.1155/2014/514962

    Article  CAS  Google Scholar 

  6. Bremner SP, Levy MY, Honsberg CB (2008) Analysis of tandem solar cell efficiencies under AM1. 5G spectrum using a rapid flux calculation method. Prog Photovoltaics Res Appl 16:225–233. https://doi.org/10.1002/pip.799

    Article  Google Scholar 

  7. Marti A, Araújo GL (1996) Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol Energy Mater Sol Cells 43:203–222. https://doi.org/10.1016/0927-0248(96)00015-3

    Article  CAS  Google Scholar 

  8. Werner J, Niesen B, Ballif C (2018) Perovskite/silicon tandem solar cells: marriage of convenience or true love story?–An overview. Adv Mater Interfaces 5:1700731. https://doi.org/10.1002/admi.201700731

    Article  Google Scholar 

  9. Wang Z, Song Z, Yan Y et al (2019) Perovskite—a perfect top cell for tandem devices to break the S–Q limit. Adv Sci 6:1801704. https://doi.org/10.1002/advs.201801704

    Article  CAS  Google Scholar 

  10. Leijtens T, Bush KA, Prasanna R, McGehee MD (2018) Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy 3:828–838. https://doi.org/10.1038/s41560-018-0190-4

    Article  ADS  CAS  Google Scholar 

  11. Lal NN, Dkhissi Y, Li W et al (2017) Perovskite tandem solar cells. Adv Energy Mater 7:1602761. https://doi.org/10.1002/aenm.201602761

    Article  CAS  Google Scholar 

  12. Jost M, Kohnen E, Morales-Vilches AB et al (2018) Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield. Energy Environ Sci 11:3511–3523. https://doi.org/10.1039/c8ee02469c

    Article  CAS  Google Scholar 

  13. Islam T, Jani R, Islam AF et al (2021) Investigation of CsSn0.5Ge0.5I3-on-Si tandem solar device utilizing SCAPS simulation. IEEE Trans Electron Devices 68:618–625. https://doi.org/10.1109/TED.2020.3045383

    Article  ADS  CAS  Google Scholar 

  14. Lakhdar N, Hima A (2020) Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt Mater (Amst) 99:109517. https://doi.org/10.1016/j.optmat.2019.109517

    Article  CAS  Google Scholar 

  15. Yu C (2019) Advances in modelling and simulation of halide perovskites for solar cell applications advances in modelling and simulation of halide perovskites for solar cell applications. J Phys Energy 1:022001. https://doi.org/10.1088/2515-7655/aaf143

    Article  CAS  Google Scholar 

  16. Raj A, Kumar M, Bherwani H et al (2021) Evidence of improved power conversion efficiency in lead-free CsGeI 3 based perovskite solar cell heterostructure via scaps simulation. J Vac Sci Technol B 39:012401. https://doi.org/10.1116/6.0000718

    Article  CAS  Google Scholar 

  17. Diouf B, Muley A, Pode R (2023) Issues, challenges, and future perspectives of perovskites for energy conversion applications. Energies 16:6498. https://doi.org/10.3390/en16186498

    Article  CAS  Google Scholar 

  18. Mesquita I, Andrade L, Mendes A (2018) Perovskite solar cells: materials, configurations and stability. Renew Sustain Energy Rev 82:2471–2489. https://doi.org/10.1016/j.rser.2017.09.011

    Article  CAS  Google Scholar 

  19. Chen Y, Zhang L, Zhang Y et al (2018) Large-area perovskite solar cells-a review of recent progress and issues. RSC Adv 8:10489–10508. https://doi.org/10.1039/c8ra00384j

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asmontas S, Mujahid M (2023) Recent progress in perovskite tandem solar cells. Nanomaterials 13:1886. https://doi.org/10.3390/nano13121886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ji F, Boschloo G, Wang F, Gao F (2023) Challenges and progress in lead-free halide double perovskite solar cells. Sol RRL 7:2201112. https://doi.org/10.1002/solr.202201112

    Article  CAS  Google Scholar 

  22. Mahajan P, Datt R, Chung Tsoi W et al (2021) Recent progress, fabrication challenges and stability issues of lead-free tin-based perovskite thin films in the field of photovoltaics. Coord Chem Rev 429:213633. https://doi.org/10.1016/j.ccr.2020.213633

    Article  CAS  Google Scholar 

  23. Cai T, Shi W, Hwang S et al (2020) Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals. J Am Chem Soc 142:11927–11936. https://doi.org/10.1021/jacs.0c04919

    Article  CAS  PubMed  Google Scholar 

  24. Mohandes A, Moradi M, Nadgaran H (2021) Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Opt Quantum Electron 53:1–22. https://doi.org/10.1007/s11082-021-02959-z

    Article  CAS  Google Scholar 

  25. He Y, Xu L, Yang C et al (2021) Design and numerical investigation of a lead-free inorganic layered double perovskite cs4cusb2cl12 nanocrystal solar cell by scaps-1d. Nanomaterials 11:1–19. https://doi.org/10.3390/nano11092321

    Article  CAS  Google Scholar 

  26. Yadav SC, Manjunath V, Srivastava A et al (2022) Stable lead-free Cs4CuSb2Cl12 layered double perovskite solar cells yielding theoretical efficiency close to 30%. Opt Mater (Amst) 132:112676. https://doi.org/10.1016/j.optmat.2022.112676

    Article  CAS  Google Scholar 

  27. Pindolia G, Shinde SM, Jha PK (2022) Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Sol Energy 236:802–821. https://doi.org/10.1016/j.solener.2022.03.053

    Article  ADS  CAS  Google Scholar 

  28. Gamal N, Sedky SH, Shaker A, Fedawy M (2021) Design of lead-free perovskite solar cell using Zn1-xMgxO as ETL: SCAPS device simulation. Optik (Stuttg) 242:167306. https://doi.org/10.1016/j.ijleo.2021.167306

    Article  ADS  CAS  Google Scholar 

  29. Madani S, Tesfamichael T, Wang H, Motta N (2022) Study of Pb-based and Pb-free perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport material. Ceram Int 48:15207–15217. https://doi.org/10.1016/j.ceramint.2022.02.051

    Article  CAS  Google Scholar 

  30. Amri K, Belghouthi R, Aillerie M, Gharbi R (2021) Device optimization of a lead-free perovskite/silicon tandem solar cell with 24.4% power conversion efficiency. Energies 14:3383. https://doi.org/10.3390/en14123383

    Article  CAS  Google Scholar 

  31. Kim K, Gwak J, Ahn SK et al (2017) Simulations of chalcopyrite/c-Si tandem cells using SCAPS-1D. Sol Energy 145:52–58. https://doi.org/10.1016/j.solener.2017.01.031

    Article  ADS  CAS  Google Scholar 

  32. Mashot Jafar A, Khalaph KA, Moula Hmood A (2020) Lead-free perovskite and double perovskite solar cells. IOP Conf Ser Mater Sci Eng 765:1–11. https://doi.org/10.1088/1757-899X/765/1/012047

    Article  Google Scholar 

  33. Loper P, Stuckelberger M, Niesen B et al (2015) Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J Phys Chem Lett 6:66–71. https://doi.org/10.1021/jz502471h

    Article  CAS  PubMed  Google Scholar 

  34. Al-Mousoi AK, Mohammed MKA, Kumar A et al (2023) Understanding auger recombination in perovskite solar cells. Phys Chem Chem Phys 25:16459–16468. https://doi.org/10.1039/d3cp00441d

    Article  CAS  PubMed  Google Scholar 

  35. Madan J, Shivani, Pandey R, Sharma R (2020) Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol Energy 197:212–221. https://doi.org/10.1016/j.solener.2020.01.006

    Article  ADS  CAS  Google Scholar 

  36. Sinha NK, Ghosh DS, Khare A (2022) Role of built-in potential over ETL/perovskite interface on the performance of HTL-free perovskite solar cells. Opt Mater (Amst) 129:112517. https://doi.org/10.1016/j.optmat.2022.112517

    Article  CAS  Google Scholar 

  37. Yoshikawa K, Kawasaki H, Yoshida W et al (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:17032. https://doi.org/10.1038/nenergy.2017.32

    Article  ADS  CAS  Google Scholar 

  38. Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S (2022) Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Sol Energy 236:195–205. https://doi.org/10.1016/j.solener.2022.01.046

    Article  ADS  CAS  Google Scholar 

  39. Abdelaziz S, Zekry A, Shaker A, Abouelatta M (2022) Investigation of lead-free MASnI3-MASnIBr2 tandem solar cell: numerical simulation. Opt Mater (Amst) 123:111893. https://doi.org/10.1016/j.optmat.2021.111893

    Article  CAS  Google Scholar 

  40. Eperon GE, Stranks SD, Menelaou C et al (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7:982–988. https://doi.org/10.1039/c3ee43822h

    Article  CAS  Google Scholar 

  41. Dastan D, Mohammed MKA, Al-Mousoi AK et al (2023) Insights into the photovoltaic properties of indium sulfide as an electron transport material in perovskite solar cells. Sci Rep 13:1–11. https://doi.org/10.1038/s41598-023-36427-3

    Article  CAS  Google Scholar 

  42. Salem MS, Shaker A, Zekry A et al (2021) Analysis of hybrid hetero-homo junction lead-free perovskite solar cells by scaps simulator. Energies 14:1–23. https://doi.org/10.3390/en14185741

    Article  CAS  Google Scholar 

  43. Abdelaziz S, Zekry A, Shaker A, Abouelatta M (2020) Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt Mater (Amst) 101:109738. https://doi.org/10.1016/j.optmat.2020.109738

    Article  CAS  Google Scholar 

  44. Sengar BS, Garg V, Kumar A, Dwivedi P (2021) Numerical simulation: design of high-efficiency planar p-n homojunction perovskite solar cells. IEEE Trans Electron Devices 68:2360–2364. https://doi.org/10.1109/TED.2021.3066454

    Article  ADS  CAS  Google Scholar 

  45. Li ZQ, Ni M, Feng XD (2019) Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater Res Express 7:1–9. https://doi.org/10.1088/2053-1591/ab5fa7

    Article  CAS  Google Scholar 

  46. Lamanna E, Matteocci F, Calabrò E et al (2020) Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%. Joule 4:865–881. https://doi.org/10.1016/j.joule.2020.01.015

    Article  CAS  Google Scholar 

  47. Al-Ashouri A, Köhnen E, Li B et al (2020) Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370:1300–1309. https://doi.org/10.1126/science.abd4016

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Benaicha M, Dehimi L, Pezzimenti F, Bouzid F (2020) Simulation analysis of a high efficiency GaInP/Si multijunction solar cell. J Semicond 41:1–6. https://doi.org/10.1088/1674-4926/41/3/032701

    Article  CAS  Google Scholar 

  49. Sarker S, Islam MT, Rauf A et al (2021) A SCAPS simulation investigation of non-toxic MAGeI3-on-Si tandem solar device utilizing monolithically integrated (2-T) and mechanically stacked (4-T) configurations. Sol Energy 225:471–485. https://doi.org/10.1016/j.solener.2021.07.057

    Article  ADS  CAS  Google Scholar 

  50. Dai L, Li S, Hu Y et al (2023) Three-terminal monolithic Perovskite/silicon tandem solar cell exceeding 29% power conversion efficiency. ACS Energy Lett 8:3839–3842. https://doi.org/10.1021/acsenergylett.3c01347

    Article  CAS  Google Scholar 

  51. Jung ED, Kim CU, Noh YW et al (2023) Aesthetic and efficient perovskite/Si tandem solar cells using luminescent down-shifting textured anti-reflection films. EcoMat 5:1–11. https://doi.org/10.1002/eom2.12399

    Article  CAS  Google Scholar 

  52. Wang Y, Tian H, Zhang D et al (2023) Study on high – efficiency double perovskite / silicon heterojunction tandem cells with sb – doped ­ Cs2AgBiBr6. J Electron Mater 52:7728–7739. https://doi.org/10.1007/s11664-023-10692-4

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Department of Science and Technology (DST), Govt. of India, for financial backing through DST SERB Project File No. SRG/2021/002110. Dr. Amitesh Kumar acknowledges DST SERB regarding the Start-up Research Grant, fostering research at NIT Patna. Mr. Pritam Kumar expresses gratitude for providing and supporting facilities for research extended by the Department of Electrical Engineering, NIT Patna. Prof. Marc Burgelman from the University of Gent, Belgium, is appreciated for providing the crucial open-source SCAPS-1D software essential to this work.

Funding

Authors are grateful to the Department of Science and Technology (DST), Govt. of India, for financial backing through DST SERB Project File No. SRG/2021/002110.

Author information

Authors and Affiliations

Authors

Contributions

PK: Conceptualization, Methodology, Visualization, Investigation, Data curation, Software, Writing-original draft. AK: Conceptualization, Methodology, Formal analysis, Supervision, Reviewing and Editing.

Corresponding author

Correspondence to Amitesh Kumar.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kumar, A. Device Engineering of Lead-free Double Perovskite (Cs4CuSb2Cl12 & Cs2AgBiBr6)/Crystalline Silicon High-Performance Eco-friendly Tandem Solar Cells. Silicon (2024). https://doi.org/10.1007/s12633-024-02920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02920-1

Keywords

Navigation