Skip to main content
Log in

Fabrication and Evaluation the Optical and Dielectric Characteristics of Promising PVA-ZrC-SiO2 Nanocompsites Films

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present work considers the integration of (zirconium carbide (ZrC)—silicon dioxide (SiO2)) nanoparticles into pure polyvinyl alcohol (PVA) at ratios of 0, 2, 4, and 6 wt% by using the casting method to prepare PNc samples. The FTIR spectroscopy studies demonstrated the presence of intermolecular hydrogen bonding between the (ZrC-SiO2) surface and the OH − groups of the PVA. The optical microscope pictures reveal a homogeneous dispersion of ZrC-SiO2 nanoparticles over the polymer film's surface. The nanocomposite films (PNc) are subjected to a comprehensive optical analysis. It Introduced different concentrations of dispersed ZrC-SiO2 into pure PVA results in a progressive reduction in the band gap for indirect allowed transitions in the PNc films. The band gap decreases from 4.49 eV to 3.24 eV, indicating a shift towards semiconductive behavior. The addition of higher concentrations of (ZrC-SiO2) resulted in an expansion of the range of refractive index (1.43–2.83), extinction coefficient (6.28 × 10–5–6.13 × 10–4), real dielectric constant (2.09–7.99), and optical conductivity (6.27 × 1010–1.29 × 1012) in these PNc films. This effect was observed at a fixed wavelength of 400 nm and varied significantly with changes in the wavelength of incident photons. The optical characteristics of PNc films based on PVA-ZrC-SiO2, which may be controlled by adjusting the nanofiller concentration, indicate their potential as versatile optical materials for advanced flexible optoelectronic systems in the future. The AC electrical characteristics of PNc, particularly the dielectric constant and dielectric loss, demonstrate a reduction as the frequency increases. On the other hand, a higher concentration of ZrC-SiO2 nanoparticles leads to an increase of these characteristics. The AC electrical conductivity of the PNc has a positive correlation with the frequency and concentration of ZrC-SiO2 nanoparticles. The PNc that were created were subjected to testing to assess its efficacy in shielding against gamma radiation. The empirical results suggest that the PNc films composed of (PVA-ZrC-SiO2) have noteworthy attenuation coefficients upon exposure to gamma rays. Finally, the results showed that PNc are promising nanostructures and important keys for potential optical and nanoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Malik S, Muhammad K, Waheed Y (2023) Nanotechnology: A revolution in modern industry. Molecules 28(2):661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hadi AH, Habeeb MA (2021) The dielectric properties of (PVA-PVP-CdS) nanocomposites for gamma shielding applications. J Phys: Conf Ser 1973(1):012063. https://doi.org/10.1088/1742-6596/1973/1/012063

    Article  CAS  Google Scholar 

  3. Rabee BH, Oreibi I (2018) Fabrication of new nanocomposites (PMMA-SPO-PS-TiC) and studying their structural and electrical properties for humidity sensors. Bull Electr Eng Inform 7(4):538–546

    Article  Google Scholar 

  4. Nasrollahzadeh M et al (2019) An introduction to nanotechnology. Interface Sci Technol 28:1–27. https://doi.org/10.1016/B978-0-12-813586-0.00001-8

    Article  CAS  Google Scholar 

  5. Huang J, Zhou J, Liu M (2022) Interphase in polymer nanocomposites. JACS Au 2(2):280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hayder N, Habeeb MA, Hashim A (2020) Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites. Egypt J Chem 63:577–592. https://doi.org/10.21608/ejchem.2019.14646.1887

    Article  Google Scholar 

  7. Jebur QM, Hashim A, Habeeb MA (2020) Structural, A.C electrical and optical properties of (polyvinyl alcohol-polyethylene oxide-aluminum oxide) nanocomposites for piezoelectric devices. Egypt J Chem 63:719–734. https://doi.org/10.21608/ejchem.2019.14847.1900

    Article  Google Scholar 

  8. Ismail MS, Elamin A, Abdel-Wahab F, Elbashar Y, Mahasen M (2022) Improving the refractive index by engineering PbS/PVA nano polymer composite for optoelectronic applications. Opt Mater 131:112639

    Article  CAS  Google Scholar 

  9. Sarkar J, Mridha D, Sarkar J, Orasugh JT, Gangopadhyay B, Chattopadhyay D, Roychowdhury T, Acharya K (2021) Synthesis of nanosilica from agricultural wastes and its multifaceted applications. A review. Biocatalysis Agric Biotechnol 37:102175

    Article  CAS  Google Scholar 

  10. Oreibi I, Habeeb MA, Hamza RSA (2023) Tailoring the structural and optical features of PVA/SiO2-CuO polymeric nanocomposite for optical and gamma ray shielding applications. Silicon 1–13. https://doi.org/10.1007/s12633-023-02769-w

  11. Abdul Hamza RS, Habeeb MA (2023) Synthesis and tuning the structural, morphological and dielectric characteristics of PVA-CMC-SiO2–Cr2O3 hybrid nanostructures for nanoelectronics devices. Opt Quantum Electron 55(8):705. https://doi.org/10.1007/s11082-023-04995-3

    Article  CAS  Google Scholar 

  12. Wen J, Chang Q, Zhu J, Cui R, He C, Yan X, Li X (2023) The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors. Renew Energy 206:676–685

    Article  CAS  Google Scholar 

  13. Habeeb MA, Hashim A, Hayder N (2020) Fabrication of (PS-Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric and fluorescence properties for IR sensors. Egypt J Chem 63:709–717. https://doi.org/10.21608/ejchem.2019.13333.1832

    Article  Google Scholar 

  14. Habeeb MA, Jaber ZS (2022) Enhancement of Structural and Optical Properties of CMC/PAA Blend by Addition of Zirconium Carbide Nanoparticles for Optics and Photonics Applications. East Eur J Phys 4:176–182. https://doi.org/10.26565/2312-4334-2022-4-18

    Article  Google Scholar 

  15. Huseynov EM (2023) FTIR spectroscopy of ZrC nanoparticles under the gamma radiation. Spectrochim Acta Part A Mol Biomol Spectrosc 286:122032

    Article  CAS  Google Scholar 

  16. Yasnó JP, Gunnewiek RF, Kiminami RH (2019) Microwave synthesis of ultra-high temperature ceramic ZrC nanopowders. Adv Powder Technol 30(7):1348–1355

    Article  Google Scholar 

  17. Habeeb MA, Mahdi SM (2023) Influence of ZrC nanofiler on the structural, dielectric and optical features of the PVA–PVP blend for electronic and optical nanodevices. Opt Quant Electron 55(12):1076

    Article  CAS  Google Scholar 

  18. Alhazime AA (2020) Effect of nano CuO doping on structural, thermal and optical properties of PVA/PEG blend. J Inorg Organomet Polym Mater 30:4459–4467

    Article  CAS  Google Scholar 

  19. Abulyazied D et al (2022) Novel nanocomposites based on polyvinyl alcohol and molybdenum nanoparticles for Gamma irradiation shielding. Opt Laser Technol 156:108560

    Article  CAS  Google Scholar 

  20. Habeeb MA (2014) Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites. J Eng Appl Sci 9(4):102–108. https://doi.org/10.36478/jeasci.2014.102.108

    Article  Google Scholar 

  21. Hashim A, Kadham AJ, Hadi A, Habeeb MA (2021) Determination of optical parameters of polymer blend/nanoceramics for electronics applications. Nanosistemi, Nanomateriali, Nanotehnologii 19(2):327–336. https://doi.org/10.15407/nnn.19.02.327

    Article  CAS  Google Scholar 

  22. Hashim A, KadhamAlgidsawi AJ, Ahmed H, Hadi A, Habeeb MA (2021) Synthesis of PVA/PVP/SnO2 nanocomposites: Structural, optical, and dielectric characteristics for pressure sensors. Nanosistemi, Nanomateriali, Nanotehnologii 19(2):353–362. https://doi.org/10.15407/nnn.19.02.353

    Article  CAS  Google Scholar 

  23. Habeeb MA, Mahdi WS (2019) Characterization of (CMC-PVP-Fe2O3) nanocomposites for gamma shielding application. Int J Emerg Trends Eng Res 7(9):247–255. https://doi.org/10.30534/ijeter/2019/06792019

    Article  Google Scholar 

  24. Hashim A, Habeeb MA, Jebur QM (2020) Structural, dielectric and optical properties for (Polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites. Egypt J Chem 63:735–749. https://doi.org/10.21608/ejchem.2019.14849.1901

    Article  Google Scholar 

  25. KadhamAlgidsawi AJ, Hashim A, Hadi A, Habeeb MA, Abed HH (2022) Influence of MnO2 Nanoparticles Addition on Structural, Optical and Dielectric Characteristics of PVA/PVP for Pressure Sensors. Phys Chem Solid State 23(2):353–360. https://doi.org/10.15330/pcss.23.2.353-360

    Article  CAS  Google Scholar 

  26. Hashim A, KadhamAlgidsawi AJ, Ahmed H, Hadi A, Habeeb MA (2021) Structural, dielectric, and optical properties for (PVA/PVP/CuO) nanocomposites for pressure sensors. Nanosistemi, Nanomateriali, Nanotehnologii 19(1):91–102. https://doi.org/10.15407/nnn.19.01.091

    Article  CAS  Google Scholar 

  27. Habeeb MA (2011) Effect of rate of deposition on the optical parameters of GaAs films. Eur J Sci Res 57(3):478–484

    Google Scholar 

  28. Mahdi SM, Habeeb MA (2022) Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites for optoelectronics and antibacterial applications. Opt Quantum Electron 54(12):854. https://doi.org/10.1007/s11082-022-04267-6

    Article  CAS  Google Scholar 

  29. Al-Sharifi NK, Habeeb MA (2023) Improvement Structural and Dielectric Properties of PS/SiC/Sb2O3 Nanostructures for Nanoelectronics Devices. East Eur J Phys 2:341–347. https://doi.org/10.26565/2312-4334-2023-2-40

    Article  Google Scholar 

  30. Mohammed AA, Habeeb MA (2023) Effect of Si3N4/TaC Nanomaterials on the Structural and Electrical Characteristics of Poly Methyl Methacrylate for Electrical and Electronics Applications. East Eur J Phys 2:157–164. https://doi.org/10.26565/2312-4334-2023-2-15

    Article  Google Scholar 

  31. Mahdi SM, Habeeb MA (2023) Low-cost piezoelectric sensors and gamma ray attenuation fabricated from novel polymeric nanocomposites. AIMS Mater Sci 10(2):288–300. https://doi.org/10.3934/matersci.2023015

    Article  CAS  Google Scholar 

  32. Soliman T, Vshivkov S (2019) Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J Non-Cryst Solids 519:119452

    Article  CAS  Google Scholar 

  33. Mahdi SM, Habeeb MA (2022) Fabrication and Tailored Structural and Dielectric characteristics of (SrTiO3/ NiO ) Nanostructure Doped (PEO/PVA) polymeric Blend for Electronics Fields. Phys Chem Solid State 23(4):785–792. https://doi.org/10.15330/pcss.23.4.785-792

    Article  CAS  Google Scholar 

  34. Liu P, Chen W, Liu C, Tian M, Liu P (2019) A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Sci Rep 9(1):9534

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  35. Habeeb MA, Mohammed AH (2023) Fabrication and tailored optical and electrical characteristics of Co2O3/SiC nanostructures doped PVA for multifunctional technological applications. Opt Quant Electron 55(9):791. https://doi.org/10.1007/s11082-023-05061-8

    Article  CAS  Google Scholar 

  36. Habeeb MA, Kadhim WK (2014) Study the optical properties of (PVA-PVAC-Ti) nanocomposites. J Eng Appl Sci 9(4):109–113. https://doi.org/10.36478/jeasci.2014.109.113

    Article  Google Scholar 

  37. Habeeb MA, Hashim A, Hayder N (2020) Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding. Egypt J Chem 63:697–708. https://doi.org/10.21608/ejchem.2019.12439.1774

    Article  Google Scholar 

  38. Hashim A, Habeeb MA (2018) Structural and optical properties of (Biopolymer Blend-Metal Oxide) bionanocomposites for humidity sensors. J Bionanosci 12(5):660–663. https://doi.org/10.1166/jbns.2018.1578

    Article  CAS  Google Scholar 

  39. Al-Muntaser A, Pashameah RA, Sharma K, Alzahrani E, Hameed S, Morsi M (2022) Boosting of structural, optical, and dielectric properties of PVA/CMC polymer blend using SrTiO3 perovskite nanoparticles for advanced optoelectronic applications. Opt Mater 132:112799

    Article  CAS  Google Scholar 

  40. Mahdi SM, Habeeb MA (2023) Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications. Polym Bull 80(12):12741–12760. https://doi.org/10.1007/s00289-023-04676-x

    Article  CAS  Google Scholar 

  41. Khairy Y, Mohammed M, Elsaeedy H, Yahia I (2021) Optical and electrical properties of SnBr 2-doped polyvinyl alcohol (PVA) polymeric solid electrolyte for electronic and optoelectronic applications. Optik 228:166129

    Article  CAS  ADS  Google Scholar 

  42. Dwech MH, Habeeb MA, Mohammed AH (2022) Fabrication and Evaluation of Optical Characterstic of (PVA-MnO2–ZrO2) Nanocomposites for Nanodevices in Optics and Photonics. Ukr J Phys 67(10):757–762. https://doi.org/10.15407/ujpe67.10.757

    Article  Google Scholar 

  43. Mohammed AA, Habeeb MA (2023) Modification and development of the structural, optical and antibacterial characteristics of PMMA/Si3N4/TaC nanostructures. Silicon. https://doi.org/10.1007/s12633-023-02426-2

    Article  Google Scholar 

  44. Al-Sharifi NK, Habeeb MA (2023) Synthesis and exploring structural and optical properties of ternary PS/SiC/Sb2O3 nanocomposites for optoelectronic and antimicrobial applications. Silicon. https://doi.org/10.1007/s12633-023-02418-2

    Article  Google Scholar 

  45. Oreibi I, Al-Issawe JM (2023) A class of two-dimensional WSeTe monolayers under pressures with novel electronic and optical properties. Turk Comput Theor Chem 7(2):12–19

    Article  CAS  Google Scholar 

  46. Hamza RSA, Habeeb MA (2023) Reinforcement of morphological, structural, optical, and antibacterial characteristics of PVA/ CMC bioblend filled with SiO2/Cr2O3 hybrid nanoparticles for optical nanodevices and food packing industries. Polym Bull 1–22. https://doi.org/10.1007/s00289-023-04913-3

  47. Algidsawi AJ, Hashim AH, Hadi A, Habeeb MA (2021) Exploring the characteristics of SnO2 nanoparticles doped organic blend for low cost nanoelectronics applications. Semicond Phys Quantum Electron Optoelectron 24(4):472–477. https://doi.org/10.15407/spqeo24.04.472

    Article  Google Scholar 

  48. Hadi AH, Habeeb MA (2021) Effect of CdS nanoparticles on the optical properties of (PVA-PVP) blends. J Mech Eng Res Dev 44(3):265–274. https://jmerd.net/03–2021–265–274/

  49. Habeeb MA, Abdul Hamza RS (2018) Novel of (biopolymer blend-MgO) nanocomposites: Fabrication and characterization for humidity sensors. J Bionanosci 12(3):328–335. https://doi.org/10.1166/jbns.2018.1535

    Article  CAS  Google Scholar 

  50. Habeeb MA, Rahdi WH (2023) Titanium carbide nanoparticles filled PVA-PAAm nanocomposites, structural and electrical characteristics for application in energy storage. Opt Quantum Electron 55(4):334. https://doi.org/10.1007/s11082-023-04639-6

    Article  CAS  Google Scholar 

  51. Habeeb MA, Jaber ZS, Radi WH (2023) Synthesis and characterization of (PVA-CoO-ZrO2) nanostructures for nanooptoelectronic fields. East Eur J Phys 2:228–233. https://doi.org/10.26565/2312-4334-2023-2-25

    Article  Google Scholar 

  52. Mahdi SM, Habeeb MA (2022) Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices. Dig J Nanomater Biostructures 17(3):941–948. https://doi.org/10.15251/DJNB.2022.173.941

    Article  Google Scholar 

  53. Habeeb MA, Hamza RSA (2018) Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for piezoelectric application. Indones J Electr Eng Inform 6(4):428–435. https://doi.org/10.11591/ijeei.v6i1.511

    Article  Google Scholar 

  54. Akkurt I, Akyildirim H, Mavi B, Kilincarslan S, Basyigit C (2010) Gamma-ray shielding properties of concrete including barite at different energies. Prog Nucl Energy 52(7):620–623

    Article  CAS  Google Scholar 

  55. Eid GA, Kany A, El-Toony M, Bashter I, Gaber F (2013) Application of epoxy/Pb3O4 composite for gamma ray shielding. Arab J Nucl Sci App 46(2):226–233

    Google Scholar 

Download references

Acknowledgements

Acknowledgements to University of Babylon

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection and analysis were performed by Majeed Ali Habeeb, Rehab Shather Abdul Hamza, Idrees Oreibi and Dhay Ali Sabur. The first draft of the manuscript was written by Majeed Ali Habeeb and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majeed Ali Habeeb.

Ethics declarations

Ethics Approval

The research is not involving the studies on human or their data.

Consent to Participate

Consent.

Consent for Publication

Consent.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habeeb, M.A., Hamza, R.S.A., Oreibi, I. et al. Fabrication and Evaluation the Optical and Dielectric Characteristics of Promising PVA-ZrC-SiO2 Nanocompsites Films. Silicon (2024). https://doi.org/10.1007/s12633-024-02903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02903-2

Keywords

Navigation