Skip to main content

Advertisement

Log in

FTIR Spectral Characterization, Mechanical and Electrical Properties of P2O5-Li2O-CuO Glass-Ceramics

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present investigation, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were employed to study the crystallization of (50 P2O5–50 Li2O with different CuO concentrations) glasses. Both mechanical and electrical properties were studied. The results clarified the formation of LiPO3 phase along with Li2CuP2O7 one which became more pronounced with successive increase in CuO contents having in mind that these phases caused measurable increase in density values. Additionally, the fracture toughness, compressive strength and elastic modulus were positively affected by the increasing of CuO contents. Moreover, DC conductivity and activation energy were also dependent on CuO contents where the latter recorded 0.56 eV for sample contained the highest CuO content. On the other hand, AC conductivity was nearly the same at low frequencies for samples had the lowest and highest CuO contents. However, in high frequencies, it showed a noticeable enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petit L (2020) Radiation effects on phosphate glasses: review. Int J Appl Glas Sci 11:511–521

    Article  CAS  Google Scholar 

  2. Hruška B, Dagupati R, Chromčikova M, Nowicka A, Michálková J, Peterson JA, Liška M, Munoz F (2020) Structure and Raman spectra of binary barium phosphate glasses. J Therm Anal Calorim In Press

  3. Metwalli M, Karabulut M, Sidebottom DL, Morsi MM, Brow RK (2004) Properties and structure of copper ultraphosphate glasses. J Non-Cryst Solids 344(3):128–134

    Article  CAS  Google Scholar 

  4. Fu L, Enggvist H, Xia W (2020) Glass-ceramics in dentistry: a review. Materials 13(5):1–22

    Google Scholar 

  5. Mohaghegh E, Nemati A, Yekta BE, Banijamali S, Rezaei F (2015) Influence of Fe2O3 on non-isothermal crystallization kinetics and microstructure of lithium titanium phosphate glass-ceramics. J Non-Cryst Solids 408:130–136

    Article  CAS  Google Scholar 

  6. Liu H, Wang Y, Wang T, Yang R, Liu S (2014) Enhanced surface crystallization of glass by adding traditional oxide nucleating agents. Ceram Int 40(1):453–457

    Article  CAS  Google Scholar 

  7. Deubener J, Allix M, Davis MJ, Duran A, Höche T, Honma T, Komatsu T, Krüger S, Mitra I, Müller R (2018) Updated definition of glass-ceramics. J Non-Cryst Solids 501:3–10

    Article  CAS  Google Scholar 

  8. Ishiyama T, Suzuki S, Nishii J, Yamashita T, Kawazoe H, Omata T (2014) Proton conducting tungsten phosphate glass and its application in intermediate temperature fuel cells. Solid State Ionics 262:856–859

    Article  CAS  Google Scholar 

  9. Ishiyama T, Nishii J, Yamashita T, Kawazoe H, Omata T (2014) Electrochemical substitution of sodium ions with protons in phosphate glass to fabricate pure proton conducting glass at intermediate temperatures. J Mater Chem A 2(11):3940–3947

    Article  CAS  Google Scholar 

  10. Nakata S, Togashi T, Honma T, Komatsu T (2016) Cathode properties of sodium iron phosphate glass for sodium ion batteries. J Non-Cryst Solids 450:109–115

    Article  CAS  Google Scholar 

  11. Stunda-Zujeva A, Vecstaudža J, Krieķe G, Bērziņa-Cimdiņa L (2017) Glass formation and crystallization in P2O5-Nb2O5-CaO-Na2O system. Materials Science and Applied Chemistry 34(1):21–28

    CAS  Google Scholar 

  12. Ouis M, Taha MA, El-Bassyouni GT, Azooz M (2019) Thermal, mechanical and electrical properties of lithium phosphate glasses doped with copper oxide. Bull Mater Sci 42(5):246

    Article  CAS  Google Scholar 

  13. Youness RA, Taha MA, El-Kheshen AA, El-Faramawy N, Ibrahim M (2019) In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Materials Research Express 6(7):075212

    Article  CAS  Google Scholar 

  14. Youness RA, Taha MA, Ibrahim M, El-Kheshen A (2017) FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses. Silicon 10(3):1151–1159

    Article  CAS  Google Scholar 

  15. Youness RA, Taha MA, El-Kheshen AA, Ibrahim M (2018) Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass. Ceram Int 44(17):20677–20685

    Article  CAS  Google Scholar 

  16. RA Youness, MA Taha, MA Ibrahim (2020), In vitro bioactivity, molecular structure and mechanical properties of zirconia-carbonated hydroxyapatite nanobiocomposites sintered at different temperatures, materials chemistry and physics 239

  17. R.A. Youness, M.A. Taha, M. Ibrahim, Dense alumina-based carbonated fluorapatite nanobiocomposites for dental applications, Materials Chemistry and Physics (2020) 123264

  18. Moustafa EB, Taha MA (2020) Preparation of high strength graphene reinforced cu-based nanocomposites via mechanical alloying method: microstructural, mechanical and electrical properties. Applied Physics A 126(3)

  19. Youness RA, Taha MA, Ibrahim MA (2017) Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J Mol Struct 1150:188–195

    Article  CAS  Google Scholar 

  20. Taha MA, Zawrah MF (2020) Fabrication of Al2O3-ZrO2-Ni composites with improved toughness using nano powders prepared by mechanical alloying. Ceram Int 46(11):19519–19529

    Article  CAS  Google Scholar 

  21. Ozer D, Ertekin Z, Pekmez K, Oztas NA (2019) Fuel effects on Li2CuP2O7 synthesized by solution combustion method for lithium-ion batteries. Ceram Int 45(4):4626–4630

    Article  CAS  Google Scholar 

  22. Abo-Naf S, El-Amiry M, Abdel-Khalek A (2008) FT-IR and UV–Vis optical absorption spectra of γ-irradiated calcium phosphate glasses doped with Cr2O3, V2O5 and Fe2O3. Opt Mater 30(6):900–909

    Article  CAS  Google Scholar 

  23. Abdelghany A, ElBatal H, Marei L (2012) Optical and shielding behavior studies of vanadium-doped lead borate glasses. Radiation Effects and Defects in Solids 167(1):49–58

    Article  CAS  Google Scholar 

  24. ElBatal H, Abdelghany A, Ali I (2012) Optical and FTIR studies of CuO-doped lead borate glasses and effect of gamma irradiation. J Non-Cryst Solids 358(4):820–825

    Article  CAS  Google Scholar 

  25. Thokchom JS, Kumar B (2010) The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. J Power Sources 195(9):2870–2876

    Article  CAS  Google Scholar 

  26. Daguano JK, Milesi MT, Rodas AC, Weber AF, Sarkis JE, Hortellani MA, Zanotto ED (2019) In vitro biocompatibility of new bioactive lithia-silica glass-ceramics. Mater Sci Eng C 94:117–125

    Article  CAS  Google Scholar 

  27. Ye J, Wen C, Wu J, Wen N, Sa B, Zhang T (2019) Mechanical and bioactive properties of lithium disilicate glass-ceramic mixtures synthesized by two different methods. J Non-Cryst Solids 509:1–9

    Article  CAS  Google Scholar 

  28. N Monmaturapoj, P Lawita, W Thepsuwan (2013). Characterisation and properties of lithium disilicate glass ceramics in the SiO2-Li2O-K2O-Al2O3 system for dental applications, advances in materials science and engineering 2013

  29. Attallah M, Farouk M, El-Korashy A, ElOkr M (2018) Copper doped phosphate glass as an optical Bandpass filter. Silicon 10(2):547–554

    Article  CAS  Google Scholar 

  30. Barlet M, Delaye J-M, Charpentier T, Gennisson M, Bonamy D, Rouxel T, Rountree CL (2015) Hardness and toughness of sodium borosilicate glasses via Vickers's indentations. J Non-Cryst Solids 417:66–79

    Article  CAS  Google Scholar 

  31. Abo-Naf SM, Khalil E-SM, El-Sayed E-SM, Zayed HA, Youness RA (2015) In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O–CaO–B2O3–P2O5 glasses. Spectrochim Acta A Mol Biomol Spectrosc 144:88–98

    Article  CAS  PubMed  Google Scholar 

  32. Khalil EMA, Youness RA, Amer MS, Taha MA (2018) Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics. Ceram Int 44(7):7867–7876

    Article  CAS  Google Scholar 

  33. Sadok KH, Haouari M, Gallot-Lavallée O, Ouada HB (2019) Effect of Na2SO4 substitution for Na2O on the structural and electrical properties of a sodium borophosphate glass. J Alloys Compd 778:878–888

    Article  CAS  Google Scholar 

  34. Tsuchiya T, Moriyaent T (1975). Glass Ceram Res Inst Bull 22:2

    Google Scholar 

  35. Broglia G, Mugoni C, Siligardi C, Montorsi M (2018) Lithium and copper transport properties in phosphate glasses: a molecular dynamics study. J Non-Cryst Solids 481:522–529

    Article  CAS  Google Scholar 

  36. Krichen M, Gargouri M, Guidara K, Megdiche M (2017) Phase transition and electrical investigation in lithium copper pyrophosphate compound li 2 CuP 2 O 7 using impedance spectroscopy. Ionics 23(12):3309–3322

    Article  CAS  Google Scholar 

  37. Pavić L, Skoko Ž, Gajović A, Su D, Moguš-Milanković A (2018) Electrical transport in iron phosphate glass-ceramics. J Non-Cryst Solids 502:44–53

    Article  CAS  Google Scholar 

  38. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18(71):41–102

    Article  CAS  Google Scholar 

  39. Langar A, Sdiri N, Elhouichet H, Ferid M (2017) Structure and electrical characterization of ZnO-Ag phosphate glasses. Results in Physics 7:1022–1029

    Article  Google Scholar 

  40. Khoon TF, Hassan J, Abd Wahab Z, Azis RAS (2016) Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method, Engineering Science and Technology-An. International Journal-Jestech 19(4):2081–2087

    Google Scholar 

  41. Zangina T, Hassan J, Matori KA, Ahmadu U, See A (2016) Sintering behavior, ac conductivity and dielectric relaxation of Li1. 3Ti1. 7Al0. 3 (PO4) 3 NASICON compound. Results in Physics 6:719–725

    Article  Google Scholar 

  42. Ghosh A (1990) Ac conduction in iron bismuthate glassy semiconductors. Phys Rev B 42(2):1388–1393

    Article  CAS  Google Scholar 

  43. Jouglard D, Neyret M, Campo L, Malki M (2018) Electrical property investigations and microstructure characterization of a nuclear borosilicate glass ceramic. J Nucl Mater 510:27–37

    Article  CAS  Google Scholar 

  44. Majhi K, Vaish R, Paramesh G, Varma KBR (2013) Electrical transport characteristics of ZnO–bi 2 O 3–B 2 O 3 glasses. Ionics 19(1):99–104

    Article  CAS  Google Scholar 

  45. Shapaan M, El-Badry S, Mostafa A, Hassaan M, Hazzaa M (2012) Structural and electric-dielectric properties of some bismuth-phosphate glasses. J Phys Chem Solids 73(3):407–417

    Article  CAS  Google Scholar 

  46. Punia R, Kundu R, Murugavel S, Kishore N (2012) Hopping conduction in bismuth modified zinc vanadate glasses: an applicability of Mott's model. J Appl Phys 112(11):113716

    Article  CAS  Google Scholar 

  47. Shukla N, Kumar V, Dwivedi D (2016) Dependence of dielectric parameters and ac conductivity on frequency and temperature in bulk se 90 cd 8 in 2 glassy alloy. J Non-Oxide Glasses 8(2):47–57

    Google Scholar 

  48. Mugoni C, Montorsi M, Siligardi C, Jain H (2014) Electrical conductivity of copper lithium phosphate glasses. J Non-Cryst Solids 383:137–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Taha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M.A., Youness, R.A., El-Bassyouni, G.T. et al. FTIR Spectral Characterization, Mechanical and Electrical Properties of P2O5-Li2O-CuO Glass-Ceramics. Silicon 13, 3075–3084 (2021). https://doi.org/10.1007/s12633-020-00661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00661-5

Keywords

Navigation